Fast radio bursts (FRBs) are flashes of unknown physical origin. The majority of FRBs have been seen only once, although some are known to generate multiple flashes. Many models invoke magnetically powered neutron stars (magnetars) as the source of the emission.
View Article and Find Full Text PDFThe discovery of a radioactively powered kilonova associated with the binary neutron-star merger GW170817 remains the only confirmed electromagnetic counterpart to a gravitational-wave event. Observations of the late-time electromagnetic emission, however, do not agree with the expectations from standard neutron-star merger models. Although the large measured ejecta mass could be explained by a progenitor system that is asymmetric in terms of the stellar component masses (that is, with a mass ratio q of 0.
View Article and Find Full Text PDFFast radio bursts (FRBs) are brief, bright, extragalactic radio flashes. Their physical origin remains unknown, but dozens of possible models have been postulated. Some FRB sources exhibit repeat bursts.
View Article and Find Full Text PDFFast radio bursts are millisecond-duration, extragalactic radio flashes of unknown physical origin. The only known repeating fast radio burst source-FRB 121102-has been localized to a star-forming region in a dwarf galaxy at redshift 0.193 and is spatially coincident with a compact, persistent radio source.
View Article and Find Full Text PDFFast radio bursts are astronomical radio flashes of unknown physical nature with durations of milliseconds. Their dispersive arrival times suggest an extragalactic origin and imply radio luminosities that are orders of magnitude larger than those of all known short-duration radio transients. So far all fast radio bursts have been detected with large single-dish telescopes with arcminute localizations, and attempts to identify their counterparts (source or host galaxy) have relied on the contemporaneous variability of field sources or the presence of peculiar field stars or galaxies.
View Article and Find Full Text PDFFast radio bursts are millisecond-duration astronomical radio pulses of unknown physical origin that appear to come from extragalactic distances. Previous follow-up observations have failed to find additional bursts at the same dispersion measure (that is, the integrated column density of free electrons between source and telescope) and sky position as the original detections. The apparent non-repeating nature of these bursts has led to the suggestion that they originate in cataclysmic events.
View Article and Find Full Text PDFThe majority of ultraluminous X-ray sources are point sources that are spatially offset from the nuclei of nearby galaxies and whose X-ray luminosities exceed the theoretical maximum for spherical infall (the Eddington limit) onto stellar-mass black holes. Their X-ray luminosities in the 0.5-10 kiloelectronvolt energy band range from 10(39) to 10(41) ergs per second.
View Article and Find Full Text PDFAsymmetry is required by most numerical simulations of stellar core-collapse explosions, but the form it takes differs significantly among models. The spatial distribution of radioactive (44)Ti, synthesized in an exploding star near the boundary between material falling back onto the collapsing core and that ejected into the surrounding medium, directly probes the explosion asymmetries. Cassiopeia A is a young, nearby, core-collapse remnant from which (44)Ti emission has previously been detected but not imaged.
View Article and Find Full Text PDFGravitationally bound three-body systems have been studied for hundreds of years and are common in our Galaxy. They show complex orbital interactions, which can constrain the compositions, masses and interior structures of the bodies and test theories of gravity, if sufficiently precise measurements are available. A triple system containing a radio pulsar could provide such measurements, but the only previously known such system, PSR B1620-26 (refs 7, 8; with a millisecond pulsar, a white dwarf, and a planetary-mass object in an orbit of several decades), shows only weak interactions.
View Article and Find Full Text PDFMagnetars are neutron stars with X-ray and soft γ-ray outbursts thought to be powered by intense internal magnetic fields. Like conventional neutron stars in the form of radio pulsars, magnetars exhibit 'glitches' during which angular momentum is believed to be transferred between the solid outer crust and the superfluid component of the inner crust. The several hundred observed glitches in radio pulsars and magnetars have involved a sudden spin-up (increase in the angular velocity) of the star, presumably because the interior superfluid was rotating faster than the crust.
View Article and Find Full Text PDFMany physically motivated extensions to general relativity (GR) predict substantial deviations in the properties of spacetime surrounding massive neutron stars. We report the measurement of a 2.01 ± 0.
View Article and Find Full Text PDFEinstein@Home aggregates the computer power of hundreds of thousands of volunteers from 192 countries to mine large data sets. It has now found a 40.8-hertz isolated pulsar in radio survey data from the Arecibo Observatory taken in February 2007.
View Article and Find Full Text PDFThe last decade has shown us that the observational properties of neutron stars are remarkably diverse. From magnetars to rotating radio transients, from radio pulsars to isolated neutron stars, from central compact objects to millisecond pulsars, observational manifestations of neutron stars are surprisingly varied, with most properties totally unpredicted. The challenge is to establish an overarching physical theory of neutron stars and their birth properties that can explain this great diversity.
View Article and Find Full Text PDFRadio pulsars with millisecond spin periods are thought to have been spun up by the transfer of matter and angular momentum from a low-mass companion star during an x-ray-emitting phase. The spin periods of the neutron stars in several such low-mass x-ray binary (LMXB) systems have been shown to be in the millisecond regime, but no radio pulsations have been detected. Here we report on detection and follow-up observations of a nearby radio millisecond pulsar (MSP) in a circular binary orbit with an optically identified companion star.
View Article and Find Full Text PDFThe double pulsar PSR J0737-3039A/B consists of two neutron stars in a highly relativistic orbit that displays a roughly 30-second eclipse when pulsar A passes behind pulsar B. Describing this eclipse of pulsar A as due to absorption occurring in the magnetosphere of pulsar B, we successfully used a simple geometric model to characterize the observed changing eclipse morphology and to measure the relativistic precession of pulsar B's spin axis around the total orbital angular momentum. This provides a test of general relativity and alternative theories of gravity in the strong-field regime.
View Article and Find Full Text PDFBinary pulsar systems are superb probes of stellar and binary evolution and the physics of extreme environments. In a survey with the Arecibo telescope, we have found PSR J1903+0327, a radio pulsar with a rotational period of 2.15 milliseconds in a highly eccentric (e = 0.
View Article and Find Full Text PDFWe report the detection of magnetar-like x-ray bursts from the young pulsar PSR J1846-0258, at the center of the supernova remnant Kes 75. This pulsar, long thought to be exclusively rotation-powered, has an inferred surface dipolar magnetic field of 4.9 x 10(13) gauss, which is higher than those of the vast majority of rotation-powered pulsars, but lower than those of the approximately 12 previously identified magnetars.
View Article and Find Full Text PDFWe have discovered a 716-hertz eclipsing binary radio pulsar in the globular cluster Terzan 5 using the Green Bank Telescope. It is the fastest spinning neutron star found to date, breaking the 24-year record held by the 642-hertz pulsar B1937+21. The difficulty in detecting this pulsar, because of its very low flux density and high eclipse fraction (approximately 40% of the orbit), suggests that even faster spinning neutron stars exist.
View Article and Find Full Text PDFWe have identified 21 millisecond pulsars (MSPs) in globular cluster Terzan 5 by using the Green Bank Telescope, bringing the total of known MSPs in Terzan 5 to 24. These discoveries confirm fundamental predictions of globular cluster and binary system evolution. Thirteen of the new MSPs are in binaries, of which two show eclipses and two have highly eccentric orbits.
View Article and Find Full Text PDFWe have detected an x-ray nebula around the binary millisecond pulsar B1957+20. A narrow tail, corresponding to the shocked pulsar wind, is seen interior to the known Halpha bow shock and proves the long-held assumption that the rotational energy of millisecond pulsars is dissipated through relativistic winds. Unresolved x-ray emission likely represents the shock where the winds of the pulsar and its companion collide.
View Article and Find Full Text PDF