Publications by authors named "Kasper Van Acker"

Background: Ecosystem restoration is as a critical tool to counteract the decline of biodiversity and recover vital ecosystem services. Restoration efforts, however, often fall short of meeting their goals. Although functionally important levels of biodiversity can significantly contribute to the outcome of ecosystem restoration, they are often overlooked.

View Article and Find Full Text PDF

Despite the ecological significance of ericoid mycorrhizal fungi, little is known about the abiotic and biotic factors driving their diversity and community composition. To determine the relative importance of abiotic and biotic filtering in structuring ericoid mycorrhizal fungal communities, we established 156 sampling plots in two highly contrasting environments but dominated by the same Ericaceae plant species: waterlogged bogs and dry heathlands. Plots were located across 25 bogs and 27 dry heathlands in seven European countries covering a gradient in nitrogen deposition and phosphorus availability.

View Article and Find Full Text PDF

Urban trees provide many ecosystem services, including carbon sequestration, air quality improvement, storm water attenuation and energy conservation, to people living in cities. Provisioning of ecosystem services by urban trees, however, may be jeopardized by the typically poor quality of the soils in urban areas. Given their well-known multifunctional role in forest ecosystems, ectomycorrhizal fungi (EcM) may also contribute to urban tree health and thus ecosystem service provisioning.

View Article and Find Full Text PDF

Trees in urban areas face harsh environmental conditions. Ectomycorrhizal fungi (EcM) form a symbiosis with many tree species and provide a range of benefits to their host through their extraradical hyphal network. Although our understanding of the environmental drivers and large scale geographical variation of EcM communities in natural ecosystems is growing, our knowledge of EcM communities within and across urban areas is still limited.

View Article and Find Full Text PDF

Although it is well known that arbuscular mycorrhizal fungi (AMF) play a key role in the functioning of natural ecosystems, the underlying drivers determining the composition of AMF communities remain unclear. In this study, we established 138 sampling plots at 46 grassland sites, consisting of 26 acidic grasslands and 20 calcareous grasslands spread across eight European countries, to assess the relative importance of abiotic and biotic filtering in driving AMF community composition and structure in both the grassland soils and in the roots of 13 grassland plant species. Soil AMF communities differed significantly between acidic and calcareous grasslands.

View Article and Find Full Text PDF

Spatial expansion, which is a crucial stage in the process to successful biological invasion, is anticipated to profoundly affect the magnitude and spatial distribution of genetic diversity in novel colonized areas. Here, we show that, contrasting common expectations, Pyrenean rocket (Sisymbrium austriacum), retained SNP diversity as this introduced plant species descended in the Meuse River Basin. Allele frequencies did not mirror between-population distances along the predominant expansion axis.

View Article and Find Full Text PDF

Anthropogenic activities have severely altered fluxes of nitrogen and phosphorus in ecosystems worldwide. In grasslands, subsequent negative effects are commonly attributed to competitive exclusion of plant species following increased above-ground biomass production. However, some studies have shown that this does not fully account for nutrient enrichment effects, questioning whether lowering competition by reducing grassland productivity through mowing or herbivory can mitigate the environmental impact of nutrient pollution.

View Article and Find Full Text PDF

Species diversity is commonly hypothesized to result from trade-offs for different limiting resources, providing separate niches for coexisting species. As soil nutrients occur in multiple chemical forms, plant differences in acquisition of the same element derived from different compounds may represent unique niche dimensions. Because plant productivity of ecosystems is often limited by phosphorus, and because plants have evolved diverse adaptations to acquire soil phosphorus, a promising yet untested hypothesis is phosphorus resource partitioning.

View Article and Find Full Text PDF

Human activities have increasingly introduced plant species far outside their native ranges under environmental conditions that can strongly differ from those originally met. Therefore, before spreading, and potentially causing ecological and economical damage, non-native species may rapidly evolve. Evidence of genetically based adaptation during the process of becoming invasive is very scant, however, which is due to the lack of knowledge regarding the historical genetic makeup of the introduced populations and the lack of genomic resources.

View Article and Find Full Text PDF