Publications by authors named "Kasper Rouschop"

The serine/glycine (ser/gly) synthesis pathway branches from glycolysis and is hyperactivated in approximately 30% of cancers. In ~13% of glioblastoma cases, we observed frequent amplifications and rare mutations in the gene encoding the enzyme PSPH, which catalyzes the last step in the synthesis of serine. This urged us to unveil the relevance of PSPH genetic alterations and subsequent ser/gly metabolism deregulation in the pathogenesis of glioblastoma.

View Article and Find Full Text PDF

Hypoxia is a common feature of solid tumours and activates adaptation mechanisms in cancer cells that induce therapy resistance and has profound effects on cellular metabolism. As such, hypoxia is an important contributor to cancer progression and is associated with a poor prognosis. Metabolic alterations in cells within the tumour microenvironment support tumour growth via, amongst others, the suppression of immune reactions and the induction of angiogenesis.

View Article and Find Full Text PDF

Background: Lung cancer is the most lethal cancer, and 85% of cases are classified as non-small cell lung cancer (NSCLC). Metabolic rewiring is a cancer hallmark that causes treatment resistance, and lacks insights into serine/glycine pathway adaptations upon radiotherapy.

Methods: We analyzed radiotherapy responses using mass-spectrometry-based metabolomics in NSCLC patient's plasma and cell lines.

View Article and Find Full Text PDF

Background And Purpose: Hypoxia is a common feature of tumours, associated with poor prognosis due to increased resistance to radio- and chemotherapy and enhanced metastasis development. Previously we demonstrated that GABARAPL1 is required for the secretion of extracellular vesicles (EV) with pro-angiogenic properties during hypoxia. Here, we explored the role of GABARAPL1 EV in the metastatic cascade.

View Article and Find Full Text PDF

Adipose tissue (AT) inflammation may increase obesity-related cardiometabolic complications. Altered AT oxygen partial pressure (pO) may impact the adipocyte inflammatory phenotype. Here, we investigated the effects of pO levels on the inflammatory phenotype of abdominal (ABD) and femoral (FEM) adipocytes derived from postmenopausal women with normal weight (NW) or obesity (OB).

View Article and Find Full Text PDF

Tumor-associated immune cells frequently display tumor-supportive phenotypes. These phenotypes, induced by the tumor microenvironment (TME), are described for both the adaptive and the innate arms of the immune system. Furthermore, they occur at all stages of immune cell development, up to effector function.

View Article and Find Full Text PDF

Radiotherapy (RT) and chemotherapy can induce immune responses, but not much is known regarding treatment-induced immune changes in patients. This exploratory study aimed to identify potential prognostic and predictive immune-related proteins associated with progression-free survival (PFS) in patients with non-small cell lung cancer (NSCLC). In this prospective study, patients with stage I NSCLC treated with stereotactic body radiation therapy ( = 26) and patients with stage III NSCLC treated with concurrent chemoradiotherapy ( = 18) were included.

View Article and Find Full Text PDF

Hypoxia is a common feature of solid tumors and is associated with increased tumor progression, resistance to therapy and increased metastasis. Hence, tumor hypoxia is a prognostic factor independent of treatment modality. To survive hypoxia, cells activate macroautophagy/autophagy.

View Article and Find Full Text PDF
Article Synopsis
  • Tumors often become low in oxygen, which helps them grow and resist treatments.
  • To fix this, tumor cells create tiny bubbles called extracellular vesicles (EVs) that help make new blood vessels for oxygen.
  • A protein called GABARAPL1 is important for making and releasing these EVs, and if it’s turned off, the tumors don’t grow as well and respond better to treatments.
View Article and Find Full Text PDF

The N-Myc Downstream-Regulated Gene 4 (NDRG4), a prominent biomarker for colorectal cancer (CRC), is specifically expressed by enteric neurons. Considering that nerves are important members of the tumor microenvironment, we here establish different Ndrg4 knockout (Ndrg4 ) CRC models and an indirect co-culture of primary enteric nervous system (ENS) cells and intestinal organoids to identify whether the ENS, via NDRG4, affects intestinal tumorigenesis. Linking immunostainings and gastrointestinal motility (GI) assays, we show that the absence of Ndrg4 does not trigger any functional or morphological GI abnormalities.

View Article and Find Full Text PDF
Article Synopsis
  • In 2008, guidelines were established for researching autophagy, which has since gained significant interest and new technologies, necessitating regular updates to monitoring methods across various organisms.
  • The new guidelines emphasize selecting appropriate techniques to evaluate autophagy while noting that no single method suits all situations; thus, a combination of methods is encouraged.
  • The document highlights that key proteins involved in autophagy also impact other cellular processes, suggesting genetic studies should focus on multiple autophagy-related genes to fully understand these pathways.
View Article and Find Full Text PDF

Recent advances in cancer treatment modalities reveal the limitations of the prevalent "one-size-fits-all" therapies and emphasize the necessity to develop personalized approaches. In this perspective, identification of predictive biomarkers and intrinsic vulnerabilities are an important advancement for further therapeutic strategies. Autophagy is an important lysosomal degradation and recycling pathway that provides energy and macromolecular precursors to maintain cellular homeostasis.

View Article and Find Full Text PDF

Treatment of glioblastoma xenografts with chloroquine results in macroautophagy/autophagy inhibition, resulting in a reduction of tumor hypoxia and sensitization to radiation. Preclinical data show that -expressing glioblastoma may benefit most from chloroquine because of autophagy dependency. This study is the first to explore the safety, pharmacokinetics and maximum tolerated dose of chloroquine in combination with radiotherapy and concurrent daily temozolomide in patients with a newly diagnosed glioblastoma.

View Article and Find Full Text PDF
Article Synopsis
  • * In a study with C2C12 myotubes, iron chelation increased markers of mitophagy but did not depend on autophagy or related proteins to cause mitochondrial loss.
  • * Mitochondria were found in extracellular vesicles (EV), indicating that they can be eliminated from cells through a secretory pathway, rather than solely via mitophagy.
View Article and Find Full Text PDF

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive cancer arising from T-cell progenitors. Although current treatments, including chemotherapy and glucocorticoids, have significantly improved survival, T-ALL remains a fatal disease and new treatment options are needed. Since more than 60% of T-ALL cases bear oncogenic NOTCH1 mutations, small molecule inhibitors of NOTCH1 signalling; γ-secretase inhibitors (GSI), are being actively investigated for the treatment of T-ALL.

View Article and Find Full Text PDF

Tumour hypoxia is a common feature of solid tumours that contributes to poor prognosis after treatment. This is mainly due to increased resistance of hypoxic cells to radio- and chemotherapy and the association of hypoxic cells with increased metastasis development. It is therefore not surprising that an increased hypoxic tumour fraction is associated with poor patient survival.

View Article and Find Full Text PDF
Article Synopsis
  • There's been a lot of new research on tiny structures called extracellular vesicles (EVs) that cells release, which help us understand how cells work and what goes wrong in diseases.
  • Scientists have had a hard time studying these EVs because they come in different types and can be tough to separate and analyze properly.
  • The International Society for Extracellular Vesicles updated their guidelines, called MISEV2018, to help researchers share clear information about how to study EVs and ensure their findings are accurate and reliable.
View Article and Find Full Text PDF

Context And Objectives: Upper and lower body adipose tissue (AT) exhibits opposing associations with obesity-related cardiometabolic diseases. Recent studies have suggested that altered AT oxygen tension (pO2) may contribute to AT dysfunction. Here, we compared in vivo abdominal (ABD) and femoral (FEM) subcutaneous AT pO2 in women who are overweight and have obesity, and investigated the effects of physiological AT pO2 on human adipocyte function.

View Article and Find Full Text PDF

Background: Mounting evidence suggests that one of the ways that cells adapt to hypoxia is through alternative splicing. The aim of this study was firstly to examine the effect of hypoxia on the alternative splicing of cancer associated genes using the prostate cancer cell line PC3 as a model. Secondly, the effect of hypoxia on the expression of several regulators of splicing was examined.

View Article and Find Full Text PDF

Introduction: Radiotherapy education can be very different across Europe, despite the publication of the ESTRO core curricula in 2011. The purpose of the current study is to map the different RO European education systems, to report their perceived quality and to understand what could be improved to better teach RO.

Methods: An online survey consisting of 30 questions was sent to RO professionals under 40 years of age via email and social media.

View Article and Find Full Text PDF

Expression of EGFRvIII is frequently observed in glioblastoma and is associated with increased cellular proliferation, enhanced tolerance to metabolic stresses, accelerated tumor growth, therapy resistance and poor prognosis. We observed that expression of EGFRvIII elevates the activation of macroautophagy/autophagy during starvation and hypoxia and explored the underlying mechanism and consequence. Autophagy was inhibited (genetically or pharmacologically) and its consequence for tolerance to metabolic stress and its therapeutic potential in (EGFRvIII) glioblastoma was assessed in cellular systems, (patient derived) tumor xenopgrafts and glioblastoma patients.

View Article and Find Full Text PDF

Several clinically used drugs are mitotoxic causing mitochondrial DNA (mtDNA) variations, and thereby influence cancer treatment response. We hypothesized that radiation responsiveness will be enhanced in cellular models with decreased mtDNA content, attributed to altered reactive oxygen species (ROS) production and antioxidant capacity. For this purpose BEAS-2B, A549, and 143B cell lines were depleted from their mtDNA (ρ0).

View Article and Find Full Text PDF

Autophagy is best known as a lysosomal degradation and recycling pathway to maintain cellular homeostasis. During autophagy, cytoplasmic content is recognized and packed in autophagic vacuoles, or autophagosomes, and targeted for degradation. However, during the last years, it has become evident that the role of autophagy is not restricted to degradation alone but also mediates unconventional forms of secretion.

View Article and Find Full Text PDF

From yeast to mammals, autophagy is an important mechanism for sustaining cellular homeostasis through facilitating the degradation and recycling of aged and cytotoxic components. During autophagy, cargo is captured in double-membraned vesicles, the autophagosomes, and degraded through lysosomal fusion. In yeast, autophagy initiation, cargo recognition, cargo engulfment, and vesicle closure is Atg8 dependent.

View Article and Find Full Text PDF