Scope: Processing of whey protein concentrate (WPC) for infant formulas may induce protein modifications with severe consequences for preterm newborn development. The study investigates how conventional WPC and a gently processed skim milk-derived WPC (SPC) affect gut and immune development after birth.
Methods And Results: Newborn, preterm pigs used as a model of preterm infants were fed formula containing WPC, SPC, extra heat-treated SPC (HT-SPC), or stored HT-SPC (HTS-SPC) for 5 days.
Formation of Maillard reaction products (MRPs) is increasingly studied by the use of fluorescence spectroscopy, and most often, by measuring single excitation/emission pairs or use of unresolved spectra. However, due to the matrix complexity and potential co-formation of fluorescent oxidation products on tryptophan and tyrosine residues, this practice will often introduce errors in both identification and quantification. The present study investigates the combination of fluorescence excitation emission matrix (EEM) spectroscopy and parallel factor analysis (PARAFAC) to resolve the EEMs into its underlying fluorescent signals, allowing for better identification and quantification of MRPs.
View Article and Find Full Text PDFQuinones, produced by the oxidation of phenolic compounds, covalently bind to nucleophilic groups on amino acids or proteins. In this study, the reactions of 4-methylbenzoquinone (4MBQ) with β-lactoglobulin (β-LG) and amino acids at neutral pH were investigated. LC-MS analysis revealed that Cys121 was likely the most modified residue in β-LG.
View Article and Find Full Text PDFProtein-polyphenol adducts are formed upon covalent bonding between oxidized polyphenols and proteins. 4-Methylcatechol (4MC) is a polyphenol with origin in coffee and is oxidized to 4-methylbenzoquinone (4MBQ) under conditions used during food processing. The present study characterizes 4MBQ-induced covalent modifications on β-lactoglobulin (β-LG) from bovine milk, (henceforth β-LQ) and the effect on protein digestibility.
View Article and Find Full Text PDFCurrent analytical methods studying protein oxidation modifications require laborious sample preparation and chromatographic methods. Fluorescence spectroscopy is an alternative, as many protein oxidation products are fluorescent. However, the complexity of the signal causes misinterpretation and quantification errors if single emission spectra are used.
View Article and Find Full Text PDFOdor-active volatile sulfur compounds are formed in heated food protein systems. In the present study, hydrogen sulfide (HS) was found to be the most abundant sulfur volatile in whey protein solutions (whey protein isolate [WPI], a whey model system and single whey proteins) by gas chromatography-flame photometric detector (GC-FPD) analysis after heat treatments (60-90 °C for 10 min, 90 °C for 120 min and UHT-like treatment). HS was detected in WPI after heating at 90 °C for 10 min, and was significantly increased at higher heat load (90 °C for 120 min and the UHT-like treatment).
View Article and Find Full Text PDFStable function of networks requires that synapses adapt their strength to levels of neuronal activity, and failure to do so results in cognitive disorders. How such homeostatic regulation may be implemented in mammalian synapses remains poorly understood. Here we show that the phosphorylation status of several positions of the active-zone (AZ) protein RIM1 are relevant for synaptic glutamate release.
View Article and Find Full Text PDFThermal treatment is often employed in food processing to tailor product properties by manipulating the ingredient functionality, but these elevated temperatures may accelerate oxidation and nutrient loss. Here, oxidation of different whey protein systems [α-lactalbumin (α-LA), β-lactoglobulin (β-LG), a mix of α-LA and β-LG (whey model), and a commercial whey protein isolate (WPI)] was investigated during heat treatment at 60-90 °C and a UHT-like treatment by LC-MS-based proteomic analysis. The relative modification levels of each oxidation site were calculated and compared among different heat treatments and sample systems.
View Article and Find Full Text PDFDisulfides are important for maintaining the protein native structure, but they may undergo rearrangement in the presence of free Cys residues, especially under elevated temperatures. Disulfide rearrangement may result in protein aggregation, which is associated with pathologies in organisms and protein functionality in food systems. In a food context, it is therefore important to understand the process of disulfide rearrangement on a site-specific level in order to control aggregation.
View Article and Find Full Text PDFReady-to-feed liquid infant formulas (IF) were subjected to direct (D) or indirect (ID) ultra-high-temperature (UHT) treatment and then stored at 40 °C under aseptic conditions for 60-120 days simulating global transportation which accelerates the Maillard reaction. Low pasteurized and unstored IF (LP) was included as a control for the UHT treatments. Simulated infant digestion was conducted.
View Article and Find Full Text PDFProtein interaction is critical molecular regulatory activity underlining cellular functions and precise cell fate choices. Using TWIST1 BioID-proximity-labeling and network propagation analyses, we discovered and characterized a TWIST-chromatin regulatory module (TWIST1-CRM) in the neural crest cells (NCC). Combinatorial perturbation of core members of TWIST1-CRM: TWIST1, CHD7, CHD8, and WHSC1 in cell models and mouse embryos revealed that loss of the function of the regulatory module resulted in abnormal differentiation of NCCs and compromised craniofacial tissue patterning.
View Article and Find Full Text PDFWhey proteins are widely used as ingredients in the form of aggregates to obtain certain functionalities in food applications. The aim of this study was to understand how UV illumination generates aggregates of α-lactalbumin (α-LA) as an alternative to heat treatments traditionally used for industrial production of protein aggregates. Absorption of UV light by α-LA caused cleavage of disulfide bonds and release of thiol groups, which resulted in primarily disulfide-mediated aggregation.
View Article and Find Full Text PDFSNAP-25, one of the three SNARE-proteins responsible for synaptic release, can be phosphorylated by Protein Kinase C on Ser-187, close to the fusion pore. In neuroendocrine cells, this phosphorylation event potentiates vesicle recruitment into releasable pools, whereas the consequences of phosphorylation for synaptic release remain unclear. We mutated Ser-187 and expressed two mutants (S187C and S187E) in the context of the SNAP-25B-isoform in SNAP-25 knockout glutamatergic autaptic neurons.
View Article and Find Full Text PDFMesenchymal stem/stromal cells (MSCs) are self-renewing multipotent cells with regenerative, secretory and immunomodulatory capabilities that are beneficial for the treatment of various diseases. To avoid the issues that come with using tissue-derived MSCs in therapy, MSCs may be generated by the differentiation of human embryonic stems cells (hESCs) in culture. However, the changes that occur during the differentiation process have not been comprehensively characterized.
View Article and Find Full Text PDFClathrin-mediated endocytosis at the nerve terminal is dependent on assembly protein 180 (AP180) and adapter protein complex 2 (AP2). Both membrane adapter proteins bind to each other and to clathrin, to drive assembly of the clathrin coat over nascent synaptic vesicles. Using knowledge of in vivo phosphorylation sites, AP180 was mutated to determine the effect on binding.
View Article and Find Full Text PDFDepolarization of presynaptic terminals stimulates calcium influx, which evokes neurotransmitter release and activates phosphorylation-based signalling. Here, we present the first global temporal profile of presynaptic activity-dependent phospho-signalling, which includes two KCl stimulation levels and analysis of the poststimulus period. We profiled 1,917 regulated phosphopeptides and bioinformatically identified six temporal patterns of co-regulated proteins.
View Article and Find Full Text PDFAtaxia-telangiectasia, mutated (ATM) protein plays a central role in phosphorylating a network of proteins in response to DNA damage. These proteins function in signaling pathways designed to maintain the stability of the genome and minimize the risk of disease by controlling cell cycle checkpoints, initiating DNA repair, and regulating gene expression. ATM kinase can be activated by a variety of stimuli, including oxidative stress.
View Article and Find Full Text PDFObtaining high phosphoproteome coverage requires specific enrichment of phosphorylated peptides from the often extremely complex peptide mixtures generated by proteolytic digestion of biological samples, as well as extensive chromatographic fractionation prior to liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Due to the sample loss resulting from fractionation, this procedure is mainly performed when large quantities of sample are available. To make large-scale phosphoproteomics applicable to smaller amounts of protein we have recently combined highly specific TiO2-based phosphopeptide enrichment with sequential elution from immobilized metal affinity chromatography (SIMAC) for fractionation of mono- and multi-phosphorylated peptides prior to capillary scale hydrophilic interaction liquid chromatography (HILIC) based fractionation of monophosphorylated peptides.
View Article and Find Full Text PDFCysteine (Cys) oxidation is a crucial post-translational modification (PTM) associated with redox signaling and oxidative stress. As Cys is highly reactive to oxidants it forms a range of post-translational modifications, some that are biologically reversible (e.g.
View Article and Find Full Text PDFStable isotope labeling by amino acids combined with mass spectrometry is a widely used methodology for measuring relative changes in protein and phosphorylation levels at a global level. We have applied this method to the model organism Caenorhabditis elegans in combination with RNAi-mediated gene knockdown by feeding the nematode on pre-labeled lysine auxotroph Escherichia coli. In this chapter, we describe in details the generation of the E.
View Article and Find Full Text PDFMyocardial ischemia and cardioprotection by ischemic pre-conditioning induce signal networks aimed at survival or cell death if the ischemic period is prolonged. These pathways are mediated by protein post-translational modifications that are hypothesized to cross-talk with and regulate each other. Phosphopeptides and lysine-acetylated peptides were quantified in isolated rat hearts subjected to ischemia or ischemic pre-conditioning, with and without splitomicin inhibition of lysine deacetylation.
View Article and Find Full Text PDFHuman embryonic stem cells (hESCs) can differentiate into neural stem cells (NSCs), which can further be differentiated into neurons and glia cells. Therefore, these cells have huge potential as source for treatment of neurological diseases. Membrane-associated proteins are very important in cellular signaling and recognition, and their function and activity are frequently regulated by post-translational modifications such as phosphorylation and glycosylation.
View Article and Find Full Text PDFMetabolic labeling with stable isotopes is a prominent technique for comparative quantitative proteomics, and stable isotope labeling with amino acids in cell culture (SILAC) is the most commonly used approach. SILAC is, however, traditionally limited to simple tissue culture regimens and only rarely employed in the context of complex culturing conditions as those required for human embryonic stem cells (hESCs). Classic hESC culture is based on the use of mouse embryonic fibroblasts (MEFs) as a feeder layer, and as a result, possible xenogeneic contamination, contribution of unlabeled amino acids by the feeders, interlaboratory variability of MEF preparation, and the overall complexity of the culture system are all of concern in conjunction with SILAC.
View Article and Find Full Text PDFPhosphorylation, the reversible addition of a phosphate group to amino acid side chains of proteins, is a fundamental regulator of protein activity, stability, and molecular interactions. Most cellular processes, such as inter- and intracellular signaling, protein synthesis, degradation, and apoptosis, rely on phosphorylation. This PTM is thus involved in many diseases, rendering localization and assessment of extent of phosphorylation of major scientific interest.
View Article and Find Full Text PDFLarge scale quantitative phosphoproteomics depends upon multidimensional strategies for peptide fractionation, phosphopeptide enrichment, and mass spectrometric analysis. Previously, most robust comprehensive large-scale phosphoproteomics strategies have relied on milligram amounts of protein. We have set up a multi-dimensional phosphoproteomics strategy combining a number of well-established enrichment and fraction methods: An initial TiO(2) phosphopeptide pre-enrichment step is followed by post-fractionation using sequential elution from IMAC (SIMAC) to separate multi- and mono-phosphorylated peptides, and hydrophilic interaction liquid chromatography (HILIC) of the mono-phosphorylated peptides (collectively abbreviated "TiSH").
View Article and Find Full Text PDF