Publications by authors named "Kaspars Maleckis"

Poor outcomes of peripheral arterial disease stenting are often attributed to the inability of stents to accommodate the complex biomechanics of the flexed lower limb. Abrasion damage caused by rubbing of the stent against the artery wall during limb movement plays a significant role in reconstruction failure but has not been characterized. Our goals were to develop a method of assessing the abrasiveness of peripheral nitinol stents and apply it to several commercial devices.

View Article and Find Full Text PDF

Background: Noncompressible hemorrhage is a leading cause of preventable death in civilian and military trauma populations. Resuscitative endovascular balloon occlusion of the aorta (REBOA) is a promising method for controlling noncompressible hemorrhage, but safe balloon inflation parameters are not well defined. Our goal was to determine the balloon inflation parameters associated with benchtop flow occlusion and aortic/balloon rupture in ex vivo human aortas and test the hypothesis that optimal balloon inflation characteristics depend on systolic pressure and subject demographics.

View Article and Find Full Text PDF

Mechanical properties of vascular grafts likely play important roles in healing and tissue regeneration. Healthy arteries are compliant at low pressures but stiffen rapidly with increasing load, ensuring sufficient volumetric expansion without overstretching the vessel. Commercial synthetic vascular grafts are stiff and unable to expand under physiologic loads, which may result in altered hemodynamics, deleterious cellular responses, and compromised clinical performance.

View Article and Find Full Text PDF

Aortic mechanical and structural characteristics have profound effects on pathophysiology, but many aspects of physiologic stress-stretch state and intramural changes due to aging remain poorly understood in human tissues. While difficult to assess in vivo due to residual stresses and pre-stretch, physiologic stress-stretch characteristics can be calculated using experimentally-measured mechanical properties and constitutive modeling. Mechanical properties of 76 human descending thoracic aortas (TA) from 13 to 78-year-old donors (mean age 51±18 years) were measured using multi-ratio planar biaxial extension.

View Article and Find Full Text PDF

Advanced fibers revolutionized structural materials in the second half of the 20th century. However, all high-strength fibers developed to date are brittle. Recently, pioneering simultaneous ultrahigh strength and toughness were discovered in fine (<250 nm) individual electrospun polymer nanofibers (NFs).

View Article and Find Full Text PDF

High failure rates of femoropopliteal artery (FPA) interventions are often attributed to severe mechanical deformations that occur with limb flexion. One of these deformations, cross-sectional pinching, has a direct effect on blood flow, but is poorly characterized. Intra-arterial markers were deployed into = 50 cadaveric FPAs (80 ± 12 years old, 14F/11M), and limbs were imaged in standing, walking, sitting and gardening postures.

View Article and Find Full Text PDF

Background: Poor durability of femoropopliteal artery (FPA) stenting is multifactorial, and severe FPA deformations occurring with limb flexion are likely involved. Different stent designs result in dissimilar stent-artery interactions, but the degree of these effects in the FPA is insufficiently understood.

Objectives: To determine how different stent designs affect limb flexion-induced FPA deformations.

View Article and Find Full Text PDF

Endovascular stenting has matured into a commonly used treatment for peripheral arterial disease (PAD) due to its minimally invasive nature and associated reductions in short-term morbidity and mortality. The mechanical properties of the superelastic Nitinol alloy have played a major role in the explosion of peripheral artery stenting, with modern stents demonstrating reasonable resilience and durability. Yet in the superficial femoral and popliteal arteries, even the newest generation Nitinol stents continue to demonstrate clinical outcomes that leave significant room for improvement.

View Article and Find Full Text PDF

High failure rates of Peripheral Arterial Disease (PAD) stenting appear to be associated with the inability of certain stent designs to accommodate severe biomechanical environment of the femoropopliteal artery (FPA) that bends, twists, and axially compresses during limb flexion. Twelve Nitinol stents (Absolute Pro, Supera, Lifestent, Innova, Zilver, Smart Control, Smart Flex, EverFlex, Viabahn, Tigris, Misago, and Complete SE) were quasi-statically tested under bench-top axial and radial compression, axial tension, bending, and torsional deformations. Stents were compared in terms of force-strain behavior, stiffness, and geometrical shape under each deformation mode.

View Article and Find Full Text PDF

High failure rates of femoropopliteal artery (FPA) interventions are often attributed to severe mechanical deformations that occur with limb movement. Torsion of the FPA likely plays a significant role, but is poorly characterized and the associated intramural stresses are currently unknown. FPA torsion in the walking, sitting and gardening postures was characterized in = 28 FPAs using intra-arterial markers.

View Article and Find Full Text PDF