Publications by authors named "Kasparov S"

Changing one's mind is a complex cognitive phenomenon involving a continuous re-appraisal of the trade-off between past costs and future value. Recent work modeling this behavior across species has established associations between aspects of this choice process and their contributions to altered decision-making in psychopathology. Here, we investigated the actions in medial prefrontal cortex (mPFC) neurons of long intergenic non-coding RNA, LINC00473, known to induce stress resilience in a striking sex-dependent manner, but whose role in cognitive function is unknown.

View Article and Find Full Text PDF

Brain computation performed by billions of nerve cells relies on a sufficient and uninterrupted nutrient and oxygen supply. Astrocytes, the ubiquitous glial neighbours of neurons, govern brain glucose uptake and metabolism, but the exact mechanisms of metabolic coupling between neurons and astrocytes that ensure on-demand support of neuronal energy needs are not fully understood. Here we show, using experimental in vitro and in vivo animal models, that neuronal activity-dependent metabolic activation of astrocytes is mediated by neuromodulator adenosine acting on astrocytic A2B receptors.

View Article and Find Full Text PDF

Spinocerebellar ataxia type 1 (SCA1) is a debilitating neurodegenerative disorder of the cerebellum and brainstem. Memantine has been proposed as a potential treatment for SCA1. It blocks N-methyl-D-aspartate (NMDA) receptors on neurons, reduces excitotoxicity and decreases neurodegeneration in Alzheimer models.

View Article and Find Full Text PDF

Current models of respiratory CO chemosensitivity are centred around the function of a specific population of neurons residing in the medullary retrotrapezoid nucleus (RTN). However, there is significant evidence suggesting that chemosensitive neurons exist in other brainstem areas, including the rhythm-generating region of the medulla oblongata - the preBötzinger complex (preBötC). There is also evidence that astrocytes, non-neuronal brain cells, contribute to central CO chemosensitivity.

View Article and Find Full Text PDF

Lactate is a universal metabolite produced and released by all cells in the body. Traditionally it was viewed as energy currency that is generated from pyruvate at the end of the glycolytic pathway and sent into the extracellular space for other cells to take up and consume. In the brain, such a mechanism was postulated to operate between astrocytes and neurons many years ago.

View Article and Find Full Text PDF

Spinocerebellar ataxia type 1 (SCA1) is an intractable progressive neurodegenerative disease that leads to a range of movement and motor defects and is eventually lethal. Purkinje cells (PC) are typically the first to show signs of degeneration. SCA1 is caused by an expansion of the polyglutamine tract in the gene and the subsequent buildup of mutant Ataxin-1 protein.

View Article and Find Full Text PDF

Memantine is an FDA approved drug for the treatment of Alzheimer's disease. It reduces neurodegeneration in the hippocampus and cerebral cortex through the inhibition of extrasynaptic NMDA receptors in patients and mouse models. Potentially, it could prevent neurodegeneration in other brain areas and caused by other diseases.

View Article and Find Full Text PDF

One of the most challenging problems in the treatment of glioblastoma (GBM) is the highly infiltrative nature of the disease. Infiltrating cells that are non-resectable are left behind after debulking surgeries and become a source of regrowth and recurrence. To prevent tumor recurrence and increase patient survival, it is necessary to cleanse the adjacent tissue from GBM infiltrates.

View Article and Find Full Text PDF

Astrocytes support and modulate neuronal activity through the release of L-lactate. The suggested roles of astrocytic lactate in the brain encompass an expanding range of vital functions, including central control of respiration and cardiovascular performance, learning, memory, executive behaviour and regulation of mood. Studying the effects of astrocytic lactate requires tools that limit the release of lactate selectively from astrocytes.

View Article and Find Full Text PDF

Spinocerebellar ataxias are a family of fatal inherited diseases affecting the brain. Although specific mutated proteins are different, they may have a common pathogenetic mechanism, such as insufficient glutamate clearance. This function fails in reactive glia, leading to excitotoxicity and overactivation of NMDA receptors.

View Article and Find Full Text PDF

Bergmann glia (BG) are highly specialized radial astrocytes of the cerebellar cortex, which play a key role in the uptake of synaptic glutamate via the excitatory amino acid transporter EAAT1. Multiple lines of evidence suggest that in cerebellar neurodegenerative diseases reactive BG has a negative impact on neuronal function and survival through compromised EAAT activity. A family of such diseases are those caused by expansion of CAG repeats in genes of the ataxin family, resulting in spinocerebellar ataxias (SCA).

View Article and Find Full Text PDF

Astrocytes are in control of metabolic homeostasis in the brain and support and modulate neuronal function in various ways. Astrocyte-derived l-lactate (lactate) is thought to play a dual role as a metabolic and a signaling molecule in inter-cellular communication. The biological significance of lactate release from astrocytes is poorly understood, largely because the tools to manipulate lactate levels in vivo are limited.

View Article and Find Full Text PDF

In this review, we scrutinize the idea of using viral vectors either as cytotoxic agents or gene delivery tools for treatment of glioblastoma multiforme (GBM) in light of the experience that our laboratory has accumulated over ~20 years when using similar vectors in experimental neuroscience. We review molecular strategies and current clinical trials and argue that approaches which are based on targeting a specific biochemical pathway or a characteristic mutation are inherently prone to failure because of the high genomic instability and clonal selection characteristics of GBM. For the same reasons, attempts to develop a viral system which selectively transduces only GBM cells are also unlikely to be universally successful.

View Article and Find Full Text PDF

Background: Electrical stimulation applied to individual organs, peripheral nerves, or specific brain regions has been used to treat a range of medical conditions. In cardiovascular disease, autonomic dysfunction contributes to the disease progression and electrical stimulation of the vagus nerve has been pursued as a treatment for the purpose of restoring the autonomic balance. However, this approach lacks selectivity in activating function- and organ-specific vagal fibers and, despite promising results of many preclinical studies, has so far failed to translate into a clinical treatment of cardiovascular disease.

View Article and Find Full Text PDF

Maintenance of cardiorespiratory homeostasis depends on autonomic reflexes controlled by neuronal circuits of the brainstem. The neurophysiology and neuroanatomy of these reflex pathways are well understood, however, the mechanisms and functional significance of autonomic circuit modulation by glial cells remain largely unknown. In the experiments conducted in male laboratory rats we show that astrocytes of the nucleus of the solitary tract (NTS), the brain area that receives and integrates sensory information from the heart and blood vessels, respond to incoming afferent inputs with [Ca] elevations.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is the most malignant form of primary brain tumour with extremely poor prognosis. The current standard of care for newly diagnosed GBM includes maximal surgical resection followed by radiotherapy and adjuvant chemotherapy. The introduction of this protocol has improved overall survival, however recurrence is essentially inevitable.

View Article and Find Full Text PDF

Astrocytes provide neurons with essential metabolic and structural support, modulate neuronal circuit activity and may also function as versatile surveyors of brain milieu, tuned to sense conditions of potential metabolic insufficiency. Here we show that astrocytes detect falling cerebral perfusion pressure and activate CNS autonomic sympathetic control circuits to increase systemic arterial blood pressure and heart rate with the purpose of maintaining brain blood flow and oxygen delivery. Studies conducted in experimental animals (laboratory rats) show that astrocytes respond to acute decreases in brain perfusion with elevations in intracellular [Ca].

View Article and Find Full Text PDF

Viral gene delivery is one of the most versatile techniques for elucidating the mechanisms underlying brain dysfunction, such as neuropsychiatric disorders. Due to the complexity of the brain, expression of genetic tools, such as channelrhodopsin and calcium sensors, often has to be restricted to a specified cell type within a circuit implicated in these disorders. Only a handful of promoters targeting neuronal subtypes are currently used for viral gene delivery.

View Article and Find Full Text PDF

Aim: To search for genetic variants associated with premorbid personality in patients with schizophrenia.

Material And Methods: The sample included 272 men diagnosed with schizophrenia or schizoaffective disorder. Patients were divided into 3 groups based on premorbid personality difficulties: mild (group 1, n=110), moderate (group 2, n=113), marked (group 3, n=49).

View Article and Find Full Text PDF

Major depression and anxiety disorders are a social and economic burden worldwide. Serotonergic signaling has been implicated in the pathophysiology of these disorders and thus has been a crucial target for pharmacotherapy. However, the precise mechanisms underlying these disorders are still unclear.

View Article and Find Full Text PDF

Discovery of neuroprotective pathways is one of the major priorities for neuroscience. Astrocytes are natural neuroprotectors and it is likely that brain resilience can be enhanced by mobilizing their protective potential. Among G-protein coupled receptors expressed by astrocytes, two highly related receptors, GPR37L1 and GPR37, are of particular interest.

View Article and Find Full Text PDF

Inorganic polyphosphate (polyP) is present in every cell and is highly conserved from primeval times. In the mammalian cells, polyP plays multiple roles including control of cell bioenergetics and signal transduction. In the brain, polyP mediates signaling between astrocytes via activation of purinergic receptors, however, the mechanisms of polyP release remain unknown.

View Article and Find Full Text PDF

Information on the distribution and biology of the G-protein coupled receptor 4 (GPR4) in the brain is limited. It is currently thought that GPR4 couples to G proteins and may mediate central respiratory sensitivity to CO. Using a knock-in mouse model, abundant GPR4 expression was detected in the cerebrovascular endothelium and neurones of dorsal raphe, retro-trapezoidal nucleus locus coeruleus and lateral septum.

View Article and Find Full Text PDF

Key Points: Essential hypertension is associated with hyperactivity of the sympathetic nervous system and hypoperfusion of the brainstem area controlling arterial pressure. Sympathetic and parasympathetic innervation of vertebrobasilar arteries may regulate blood perfusion to the brainstem. We examined the autonomic innervation of these arteries in pre-hypertensive (PHSH) and hypertensive spontaneously hypertensive (SH) rats relative to age-matched Wistar rats.

View Article and Find Full Text PDF

Astrocytes are implicated in modulation of neuronal excitability and synaptic function, but it remains unknown if these glial cells can directly control activities of motor circuits to influence complex behaviors in vivo. This study focused on the vital respiratory rhythm-generating circuits of the preBötzinger complex (preBötC) and determined how compromised function of local astrocytes affects breathing in conscious experimental animals (rats). Vesicular release mechanisms in astrocytes were disrupted by virally driven expression of either the dominant-negative SNARE protein or light chain of tetanus toxin.

View Article and Find Full Text PDF