Publications by authors named "Kasichayanula S"

With the promise of a potentially "single dose curative" paradigm, CAR-T cell therapies have brought a paradigm shift in the treatment and management of hematological malignancies. Both CAR-T and TCR-T cell therapies have also made great progress toward the successful treatment of solid tumor indications. The field is rapidly evolving with recent advancements including the clinical development of "off-the-shelf" allogeneic CAR-T therapies that can overcome the long and difficult "vein-to-vein" wait time seen with autologous CAR-T therapies.

View Article and Find Full Text PDF

Cancer immunotherapy has significantly advanced the treatment paradigm in oncology, with approvals of immuno-oncology agents for over 16 indications, many of them first line. Checkpoint inhibitors (CPIs) are recognized as an essential backbone for a successful anticancer therapy regimen. This review focuses on the US Food and Drug Administration (FDA) regulatory approvals of major CPIs and the evolution of translational advances since their first approval close to a decade ago.

View Article and Find Full Text PDF

Dilpacimab (formerly ABT-165), a novel dual-variable domain immunoglobulin, targets both delta-like ligand 4 (DLL4) and VEGF pathways. Here, we present safety, pharmacokinetic (PK), pharmacodynamic (PD), and preliminary efficacy data from a phase I study (trial registration ID: NCT01946074) of dilpacimab in patients with advanced solid tumors. Eligible patients (≥18 years) received dilpacimab intravenously on days 1 and 15 in 28-day cycles at escalating dose levels (range, 1.

View Article and Find Full Text PDF

Veliparib (ABT-888) is a poly(ADP-ribose) polymerase inhibitor in development for the treatment of high-grade ovarian cancer or BRCA-mutated breast cancer in combination with carboplatin and paclitaxel. The population pharmacokinetics of veliparib were characterized using combined data from 1470 adult subjects with ovarian cancer, breast cancer, or other solid tumors enrolled in 6 phase 1 studies, 1 phase 2 study, and 2 phase 3 studies of veliparib oral doses of 10 to 400 mg twice daily as monotherapy or in combination with chemotherapy. A 1-compartment model with linear clearance and first-order absorption best characterized veliparib pharmacokinetics.

View Article and Find Full Text PDF

Antibody therapeutics continue to represent a significant portion of the biotherapeutic pipeline, with growing promise for bispecific antibodies (BsAbs). BsAbs can target 2 different antigens at the same time, such as simultaneously binding tumor-cell receptors and recruiting cytotoxic immune cells. This simultaneous engagement of 2 targets can be potentially advantageous, as it may overcome disadvantages posed by a monotherapy approach, like the development of resistance to treatment.

View Article and Find Full Text PDF

Budigalimab is a humanized, recombinant, Fc mutated IgG1 monoclonal antibody targeting programmed cell death 1 (PD-1) receptor, currently in phase I clinical trials. The safety, efficacy, pharmacokinetics (PKs), pharmacodynamics (PDs), and budigalimab dose selection from monotherapy dose escalation and multihistology expansion cohorts were evaluated in patients with previously treated advanced solid tumors who received budigalimab at 1, 3, or 10 mg/kg intravenously every 2 weeks (Q2W) in dose escalation, including Japanese patients that received 3 and 10 mg/kg Q2W. PK modeling and PK/PD assessments informed the dosing regimen in expansion phase using data from body-weight-based dosing in the escalation phase, based on which patients in the multihistology expansion cohort received flat doses of 250 mg Q2W or 500 mg every four weeks (Q4W).

View Article and Find Full Text PDF

We evaluated the pharmacokinetics, pharmacodynamics, and safety of evolocumab, a fully human monoclonal antibody against proprotein convertase subtilisin kexin type 9 (PCSK9), in an open-label, parallel-design study in participants with normal renal function (n = 6), severe renal impairment (RI; n = 6), or end-stage renal disease (ESRD) receiving hemodialysis (n = 6) who received a single 140-mg dose of evolocumab. The effects of evolocumab treatment on low-density lipoprotein cholesterol (LDL-C) lowering and unbound PCSK9 concentrations were similar in the normal renal function group and the renally impaired groups. Geometric mean C and AUC values in the severe RI and ESRD hemodialysis groups compared with the normal renal function group were lower but within 37% of the normal renal function group (Jonckheere-Terpstra trend test; C , P = .

View Article and Find Full Text PDF

Proprotein convertase subtilisin/kexin type 9 (PCSK9) increases plasma low-density lipoprotein cholesterol (LDL-C) by decreasing expression of the LDL receptor on hepatic cells. Evolocumab is a human monoclonal immunoglobulin G2 that binds specifically to human PCSK9 to reduce LDL-C. Evolocumab exhibits nonlinear kinetics as a result of binding to PCSK9.

View Article and Find Full Text PDF

We live in an era of precision therapeutics, value-based healthcare, patient-participatory research, and enhanced clinical trial transparency, with explosive increases in our ability to access and analyze multiscale biological and clinical data from diverse ecosystems. To discover and develop truly transformative medicines with a patient-centric sense of urgency, we will need to exploit data that lie far beyond the confines of laboratory-based experimental models and controlled clinical trials, dynamically maximizing the value of information in real-world data from clinical practice settings and even social media. This demands commitment to a culture that embraces Reverse Translation as a critical component of the practice of Translational Medicine in the discovery, development, regulation, and utilization of therapeutics.

View Article and Find Full Text PDF

If we are to improve our low success rate and rising costs in the pharmaceutical industry, we need to use every tool available. Reverse translation can particularly inform discovery and early clinical development via appropriate quantitative integration of relevant data. This commentary reports on a crowd-sourced survey (2017) that sought to evaluate the integration of reverse translation in pharma.

View Article and Find Full Text PDF

The consumption of asparagus is associated with the production of malodorous urine with considerable interindividual variability (IIV). To characterize the urinary odor kinetics after consumption of asparagus spears, we conducted a study with consenting attendees from two American Society for Clinical Pharmacology and Therapeutics (ASCPT) meetings. Subjects were randomized to eat a specific number of asparagus spears, and then asked to report their urinary odor perception.

View Article and Find Full Text PDF

Etanercept has been recently approved in the United States for the treatment of moderate to severe plaque psoriasis in patients aged 4-17 years. The objective of this study was to characterize etanercept pharmacokinetics, immunogenicity, and efficacy in pediatric patients. Data from a phase 3 study and open-label extension study were analyzed.

View Article and Find Full Text PDF
Article Synopsis
  • The focus on improving healthcare efficiency and reducing patient dropout rates presents opportunities to utilize existing clinical data for drug development and reverse translation.
  • The use of quantitative methods to transform clinical trial and real-world data into actionable insights is essential for driving innovation in this field.
  • This text reviews recent examples of reverse translation and explores future possibilities for gathering important clinical information to enhance decision-making in drug development.
View Article and Find Full Text PDF

Background: Homozygous familial hypercholesterolaemia is a genetic disorder characterised by substantially raised LDL cholesterol, reduced LDL receptor function, xanthomas, and cardiovascular disease before age 20 years. Conventional therapy is with statins, ezetimibe, and apheresis. We aimed to assess the long-term safety and efficacy of the proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitor evolocumab in a subset of patients with homozygous familial hypercholesterolaemia enrolled in an open-label, non-randomised phase 3 trial.

View Article and Find Full Text PDF

Bispecific T-cell Engagers (BiTE®) antibody constructs enable a polyclonal T-cell response to cell-surface tumor-associated antigens, bypassing the narrow specificities of T-cell receptors and the need for antigen presentation through the major histocompatibility complex pathways. Blinatumomab, a CD19xCD3 BiTE® antibody construct, received accelerated approval for the treatment of relapsed/refractory Philadelphia chromosome negative acute lymphoblastic leukemia. Herein we review the pharmacology, safety, and efficacy observed in studies of blinatumomab and other BiTE® antibody constructs.

View Article and Find Full Text PDF

Aims: Rilotumumab is a fully human monoclonal antibody investigated for the treatment of MET-positive gastric cancer. The aim of this study was to evaluate the potential pharmacokinetic (PK)-based drug-drug interaction (DDI) between rilotumumab and epirubicin (E), cisplatin(C) and capecitabine (X).

Methods: This was a Phase 3 double-blind, placebo-controlled study, in which rilotumumab, epirubicin and cisplatin were administered intravenously at 15 mg kg , 50 mg m , and 60 mg m Q3W, respectively, while capecitabine was given orally at 625 mg m twice daily.

View Article and Find Full Text PDF

Objective: Insulin adjustments to maintain glycemic control in individuals with type 1 diabetes often lead to wide glucose fluctuations, hypoglycemia, and increased body weight. Dapagliflozin, an insulin-independent sodium-glucose cotransporter 2 (SGLT2) inhibitor, increases glucosuria and reduces hyperglycemia in individuals with type 2 diabetes. The primary objective of this study was to assess short-term safety of dapagliflozin in combination with insulin; secondary objectives included pharmacokinetic, pharmacodynamic, and efficacy parameters.

View Article and Find Full Text PDF

A Bayesian mechanism-based pharmacokinetic/pharmacodynamic model of cytochrome P450 3A4 (CYP3A4) activity was developed based on a clinical study of the effects of ketoconazole and rifampin on midazolam exposure and plasma 4β-hydroxycholesterol (4βHC) concentrations. Simulations from the model demonstrated that the dynamic range of 4βHC as a biomarker of CYP3A4 induction or inhibition was narrower than that of midazolam; an inhibitor that increases midazolam area under the curve by 20-fold may only result in a 20% decrease in 4βHC after 14 days of dosing. Likewise, an inducer that elevates CYP3A4 activity by 1.

View Article and Find Full Text PDF

Aims: This study aimed to assess changes in the plasma concentrationss of 4β-hydroxycholesterol (4βHC) against intravenous (i.v.) and oral midazolam (MDZ) pharmacokinetics (PK) after administration of a potent CYP3A inhibitor [ketoconazole (KETO)] and inducer [rifampicin (RIF)].

View Article and Find Full Text PDF

Sodium-glucose co-transporter 2 (SGLT2) is predominantly expressed in the S1 segment of the proximal tubule of the kidney and is the major transporter responsible for mediating renal glucose reabsorption. Dapagliflozin is an orally active, highly selective SGLT2 inhibitor that improves glycemic control in patients with type 2 diabetes mellitus (T2DM) by reducing renal glucose reabsorption leading to urinary glucose excretion (glucuresis). Orally administered dapagliflozin is rapidly absorbed generally achieving peak plasma concentrations within 2 h.

View Article and Find Full Text PDF

Background: Dapagliflozin, a selective, orally active, renal sodium glucose cotransporter 2 (SGLT2) 2 inhibitor, is under investigation as a treatment of type 2 diabetes mellitus (T2DM). Dapagliflozin reduces hyperglycemia by inhibiting renal glucose reabsorption and dose-dependently increasing urinary glucose excretion, independent of insulin secretion or action.

Objectives: These studies assessed the single- and multiple-dose pharmacokinetic and pharmaco dynamic properties of dapagliflozin and its major inactive metabolite, dapagliflozin 3-O-glucuronide (D3OG), in healthy subjects residing in China.

View Article and Find Full Text PDF

Classical risk assessment models for setting safe occupational exposure limits (OEL) have used multiple uncertainty factors (UF) applied to a point of departure (POD), e.g., a No Observed Effect Level (NOEL), which in some cases is the pharmacological effect.

View Article and Find Full Text PDF

Objective: To examine the effect of dapagliflozin, a sodium-glucose cotransporter 2 (SGLT2) inhibitor, on the major components of renal glucose reabsorption (decreased maximum renal glucose reabsorptive capacity [TmG], increased splay, and reduced threshold), using the pancreatic/stepped hyperglycemic clamp (SHC) technique.

Research Design And Methods: Subjects with type 2 diabetes (n=12) and matched healthy subjects (n=12) underwent pancreatic/SHC (plasma glucose range 5.5-30.

View Article and Find Full Text PDF