Thin-film nanocomposite (TFN) membranes are emerging water-purification membranes that could provide enhanced water permeance with similar solute removal over traditional thin-film composite (TFC) membranes. However, the effects of nanofiller incorporation on active layer physico-chemical properties have not been comprehensively studied. Accordingly, we aimed to understand the correlation between nanofillers, active layer physico-chemical properties, and membrane performance by investigating whether observed performance differences between TFN and control TFC membranes correlated with observed differences in physico-chemical properties.
View Article and Find Full Text PDFThe partitioning of solutes into the polyamide active layers of reverse osmosis (RO) membranes is a key membrane property determining solute permeation. Quantification of partition coefficients and their dependence on feedwater pH would contribute to the development of predictive transport models of contaminant transport through RO membranes; however, neither solute partitioning nor the effect of feed solution pH on partitioning has been thoroughly characterized in the literature. Accordingly, we characterized the partitioning of all chloride salts of alkali metals (CsCl, RbCl, KCl, NaCl, and LiCl) from the aqueous phase into the polyamide active layers of five polyamide RO membranes, including one prepared in-house and four commercial membranes.
View Article and Find Full Text PDF