Class III peroxidases (PRXs) play critical roles in plant growth and development by oxidizing various substrates with HO. Although many PRXs have been identified and their roles in biotic and abiotic stress responses have extensively investigated in plants. However, functional mechanisms of PRXs in seed development remain poorly understood.
View Article and Find Full Text PDFThe polyploid genome of cotton has significantly increased the transcript complexity. Recent advances in full-length transcript sequencing are now widely used to characterize the complete landscape of transcriptional events. Such studies in cotton can help us to explore the genetic mechanisms of the cotton seedling growth.
View Article and Find Full Text PDFIntroduction: Interspecific introgression between Gossypium hirsutum and G. barbadense allows breeding cotton with outstanding fiber length (FL). However, the dynamic gene regulatory network of FL-related genes has not been characterized, and the functional mechanism through which the hub gene GhTUB5 mediates fiber elongation has yet to be determined.
View Article and Find Full Text PDFBackground: As a vital type of noncoding RNAs, circular RNAs (circRNAs) play important roles in plant growth and development and stress response. However, little is known about the biological roles of circRNAs in regulating the stability of male fertility restoration for cytoplasmic male sterility (CMS) conditioned by Gossypium harknessii cytoplasm (CMS-D2) cotton under high-temperature (HT) stress.
Results: In this study, RNA-sequencing and bioinformatics analysis were performed on pollen grains of isonuclear alloplasmic near-isogenic restorer lines NH [N(Rfrf)] and SH [S(Rfrf)] with obvious differences in fertility stability under HT stress at two environments.
Dose effects of Rf gene regulated retrieval mechanism of pollen fertility for CMS-D2 cotton. Cytoplasmic male sterility conditioned by Gossypium harknessii cytoplasm (CMS-D2) is an economical pollination control system for producing hybrid cotton seeds compared to artificial and chemical emasculation methods. However, the unstable restoring ability of restorer lines is a main barrier in the large-scale application of "three-line" hybrid cotton in China.
View Article and Find Full Text PDFResolving the genetic basis of fertility restoration for cytoplasmic male sterility (CMS) can improve the efficiency of three-line hybrid breeding. However, the genetic determinants of male fertility restoration in cotton are still largely unknown. This study comprehensively compared the full-length transcripts of CMS-D2 and CMS-D8 systems to identify potential genes linked with fertility restorer genes or .
View Article and Find Full Text PDFDeleterious effects on anther development and main economy traits caused by sterile genes or cytoplasms are one of the important genetic characteristics of cytoplasmic male sterility (CMS) systems in cotton, which severely hinder the large-scale application of "three-line" hybrids in production. Therefore, distinct characterization of each cytoplasmic type is mandatory to improve the breeding efficiency of cotton hybrids. In this study, four isonuclear-alloplasmic cotton male sterile lines with G.
View Article and Find Full Text PDFUsing cytoplasmic male sterility of (CMS-D2) is an economical and effective method to produce cotton hybrids. However, the detrimental cytoplasmic effects of CMS-D2 on pollen fertility and fiber yields greatly limit the further development of three-line hybrid cotton in China. In this study, an integrated non-targeted metabolomics and transcriptome analysis was performed on mature pollens of maintainer line NB, isonuclear alloplasmic near-isogenic restorer lines NH and SH under two environments.
View Article and Find Full Text PDFHybrid utilization has proficiently increased crop production worldwide. The cytoplasmic male sterility (CMS) system has emerged as an efficient tool for commercial hybrid cotton seed production. The restorer line with dominant gene can restore the fertility of the CMS-D8 sterile line.
View Article and Find Full Text PDFHybridization is useful to enhance the yield potential of agronomic crops in the world. Cotton has genome doubling due to the allotetraploid process and hybridization in coordination with duplicated genome can produce more yield and adaptability. Therefore, the expression of homoeologous gene pairs between hybrids and inbred parents is vital to characterize the genetic source of heterosis in cotton.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
October 2022
The emergence of drug-resistant bacteria is a precarious global health concern. In this study, surface-enhanced Raman spectroscopy (SERS) is used to characterize colistin-resistant and susceptible E. coli strains based on their distinguished SERS spectral features for the development of rapid and cost-effective detection and differentiation methods.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
April 2022
In this study, Raman spectroscopy is employed to analyze and characterize two salts (N-heterocyclic carbene) and their respective selenium N-heterocyclic carbene compounds. The features observed as differences among Raman spectral data of two different N-heterocyclic carbene salts are called Salt-I and Salt-II and their respective Se compounds, called Compound-I & Compound-II, are used to confirm the formation covalent bond between Se atom carbon atom of carbene. Enhancement in peak intensities and shifting of peak positions is directly related with compound formation.
View Article and Find Full Text PDFSoil salinity is the major limiting factor restricting plant growth and development. Little is known about the comparative and combined effects of gibberellic acid (GA) seed priming and foliar application on maize under salt stress. The current study determined the impact of different application methods of GA on morpho-physiological, biochemical and molecular responses of maize seedlings under three salinity stress treatments (no salinity, moderate salinity-6 dS m, and severe salinity-12 dS m).
View Article and Find Full Text PDFBackground: Utilization of heterosis has greatly improved the productivity of many crops worldwide. Understanding the potential molecular mechanism about how hybridization produces superior yield in upland cotton is critical for efficient breeding programs.
Results: In this study, high, medium, and low hybrids varying in the level of yield heterosis were screened based on field experimentation of different years and locations.
In this work, an improved rosin transfer process is initiated. An anisole coating is introduced based on the rosin transfer process to reduce the residue particles on the surface of transferred graphene. Rosin/graphene and anisole/rosin/graphene samples are handled without baking and with baking at different temperatures, i.
View Article and Find Full Text PDFBackground: Heterosis breeding is the most useful method for yield increase around the globe. Heterosis is an intriguing process to develop superior offspring to either parent in the desired character. The biomass vigor produced during seedling emergence stage has a direct influence on yield heterosis in plants.
View Article and Find Full Text PDFThe cytoplasmic male sterility (CMS) system is a useful tool for commercial hybrid cotton seed production. Two main CMS systems, CMS-D8 and CMS-D2, have been recognized with Rf and Rf as the restorer genes, respectively. The development of molecular markers tightly linked with restorer genes can facilitate the breeding of restorer lines.
View Article and Find Full Text PDFDNA methylation is an important epigenetic modification involved in multiple biological processes. Altered methylation patterns have been reported to be associated with male sterility in some plants, but their role in cotton cytoplasmic male sterility (CMS) remains unclear. Here, integrated methylome and transcriptome analyses were conducted between the CMS-D2 line ZBA and its near-isogenic maintainer line ZB in upland cotton.
View Article and Find Full Text PDFThe effect of ion-induced defects on graphene was studied to investigate the contact resistance of 40 nm palladium (Pd) contacting on graphene. The defect development was considered and analyzed by irradiating boron (B), carbon (C), nitrogen (N), and argon (Ar) ions on as-transferred graphene before metallization. The bombardment energy was set at 1.
View Article and Find Full Text PDFThe cytoplasmic male sterility (CMS)/restorer-of-fertility system is an important tool to exploit heterosis during commercially hybrid seed production. The importance of long noncoding RNAs (lncRNAs) in plant development is recognized, but few analyses of lncRNAs during anther development of three-line hybrid cotton (CMS-D2 line A, maintainer line B, restorer-of-fertility line R) have been reported. Here, we performed transcriptome sequencing during anther development in three-line hybrid cotton.
View Article and Find Full Text PDFAnther development in flowering plants is highly sensitive to high-temperature (HT) stress. Understanding the potential epigenetic mechanism of anther infertility induced by HT stress in cotton (Gossypium hirsutum L.) is crucial for the effective use of genetic resources to guide plant breeding.
View Article and Find Full Text PDFThe prevalence of C. daubneyi infection in the United Kingdom has increased, but despite the potential for rumen flukes to cause production loss in ruminant livestock, understanding of their emergence and spread is poor. Here we describe the development of a method to explore the multiplicity of C.
View Article and Find Full Text PDFBenzimidazoles have been intensively (for over 40 years) used in the livestock sector, particularly in small ruminants. This has been led to the widespread emergence of resistance in a number of small ruminant parasite species, especially Haemonchus contortus. In many countries benzimidazole resistance has severely compromised the control of H.
View Article and Find Full Text PDF