Publications by authors named "Kashif Sabeeh"

We investigate the spin tunability of Dirac fermions on the surface of a 3D topological insulator in proximity to a helical spin density wave, acting as an applied one-dimensional periodic potential for spins produced by spiral multiferroic oxide. It is observed that the spin mean values of Dirac fermion undergo oscillations under the influence of such a periodic potential created by the exchange field of magnetization. The tunability of spin is strongly affected by the strength, orientation and period of the exchange field.

View Article and Find Full Text PDF

In this work, far from equilibrium Hall response of semi-Dirac materials is studied. This required preparing the system in non-equilibrium states through a quantum quench protocol. We show that in the non-equilibrium setting, there is non-zero Hall response even when instantaneous time reversal symmetry (TRS) is present and the Hall current persists for long times.

View Article and Find Full Text PDF

In this work we investigate the influence of quadratic in momentum term (Schrodinger term) on magneto-transport properties of thin film topological insulators. The Schrodinger term modifies the Dirac cones into an hourglass shape which results in inter and intraband Landau levels crossings. Breaking of the particle-hole symmetry in Landau level spectrum in the presence ofterm leads to asymmetrical density of states profile.

View Article and Find Full Text PDF

We investigate the effects of linearly polarized optical radiation on the cyclotron motion of an electron wave packet, considering the full quantum dynamics of the system. Analysis of the Landau-level (LL) spectrum reveals that only intra band cyclotron oscillation frequencies contribute to the effective oscillation frequency of the motion, whereas scattering between electron and hole Landau levels are forbidden. We find that the wave packet dynamics is significantly affected by varying the polarization direction of the electromagnetic radiation.

View Article and Find Full Text PDF

We determine the optical response of ultrathin film topological insulators in the presence of a quantizing external magnetic field taking into account both hybridization between surface states, broken inversion symmetry and explicit time reversal symmetry breaking by the magnetic field. We find that breaking of inversion symmetry in the system, which can be due to interaction with a substrate or electrical gating, results in Landau level crossings and opening of additional optical transition channels that were previously forbidden. We show that by tuning the hybridization and symmetry breaking parameters, a transition from the normal to a topological insulator phase occurs with measureable signatures in both static (dc) and dynamic (optical) conductivity.

View Article and Find Full Text PDF

Theoretical study of electron wave packet dynamics in topological insulator (TI) thin films is presented. We have investigated real space trajectories and spin dynamics of electron wave packets in TI thin films. Our focus is on the role of hybridization between the electronic states of the two surfaces.

View Article and Find Full Text PDF

Zero-resistance states (ZRS) are normally associated with superconducting and quantum Hall phases. Experimental detection of ZRS in two-dimensional electron gas (2DEG) systems irridiated by microwave(MW) radiation in a magnetic field has been quite a surprise. We develop a semiclassical transport formalism to explain the phenomena.

View Article and Find Full Text PDF