Nat Nanotechnol
January 2025
Light incident upon materials can induce changes in their electrical conductivity, a phenomenon referred to as photoresistance. In semiconductors, the photoresistance is negative, as light-induced promotion of electrons across the bandgap enhances the number of charge carriers participating in transport. In superconductors and normal metals, the photoresistance is positive because of the destruction of the superconducting state and enhanced momentum-relaxing scattering, respectively.
View Article and Find Full Text PDFThe coexistence of correlated electron and hole crystals enables the realization of quantum excitonic states, capable of hosting counterflow superfluidity and topological orders with long-range quantum entanglement. Here we report evidence for imbalanced electron-hole crystals in a doped Mott insulator, namely, α-RuCl, through gate-tunable non-invasive van der Waals doping from graphene. Real-space imaging via scanning tunnelling microscopy reveals two distinct charge orderings at the lower and upper Hubbard band energies, whose origin is attributed to the correlation-driven honeycomb hole crystal composed of hole-rich Ru sites and rotational-symmetry-breaking paired electron crystal composed of electron-rich Ru-Ru bonds, respectively.
View Article and Find Full Text PDFTwist-controlled moiré superlattices (MSs) have emerged as a versatile platform for realizing artificial systems with complex electronic spectra. The combination of Bernal-stacked bilayer graphene (BLG) and hexagonal boron nitride (hBN) can give rise to an interesting MS, which has recently featured a set of unexpected behaviors, such as unconventional ferroelectricity and the electronic ratchet effect. Yet, the understanding of the electronic properties of BLG/hBN MS has, at present, remained fairly limited.
View Article and Find Full Text PDFPurpose: This study assesses the effect of pleoptic treatment on the stability of visual fixation in children and adolescents with amblyopia of various degrees.
Material And Methods: The effect of the treatment in 35 children (35 eyes) with amblyopia of various degrees was evaluated using the MP-1 Microperimeter. The stability was determined by two criteria - number of fixation point hits in the 2° zone and the width of the field of fixation.
The rapid development of infrared spectroscopy, observational astronomy, and scanning near-field microscopy has been enabled by the emergence of sensitive mid- and far-infrared photodetectors. Superconducting hot-electron bolometers (HEBs), known for their exceptional signal-to-noise ratio and fast photoresponse, play a crucial role in these applications. While superconducting HEBs are traditionally crafted from sputtered thin films such as NbN, the potential of layered van der Waals (vdW) superconductors is untapped at THz frequencies.
View Article and Find Full Text PDFMost sources state that pleoptic treatment is ineffective after the age of 14 years. Despite the high level of diagnostic capabilities in modern ophthalmology, unilateral amblyopia is quite often diagnosed in adolescents. This rises the question - should they refuse treatment? To evaluate the impact of treatment on retinal light sensitivity and the state of the patient's visual fixation, a 23-year-old female patient with high degree amblyopia was examined using the MP-1 Microperimeter.
View Article and Find Full Text PDFStructural or crystal asymmetry is a necessary condition for the emergence of zero-bias photocurrent in light detectors. Structural asymmetry has been typically achieved via p-n doping, which is a technologically complex process. Here, we propose an alternative approach to achieve zero-bias photocurrent in two-dimensional (2D) material flakes exploiting the geometrical nonequivalence of source and drain contacts.
View Article and Find Full Text PDFGraphene shows strong promise for the detection of terahertz (THz) radiation due to its high carrier mobility, compatibility with on-chip waveguides and transistors, and small heat capacitance. At the same time, weak reaction of graphene's physical properties on the detected radiation can be traced down to the absence of a band gap. Here, we study the effect of electrically induced band gap on THz detection in graphene bilayer with split-gate p-n junction.
View Article and Find Full Text PDFPhotoconductivity of novel materials is the key property of interest for design of photodetectors, optical modulators, and switches. Despite the photoconductivity of most novel 2d materials having been studied both theoretically and experimentally, the same is not true for 2d p-n junctions that are necessary blocks of most electronic devices. Here, we study the sub-terahertz photocoductivity of gapped bilayer graphene with electrically induced p-n junctions.
View Article and Find Full Text PDFThe discovery of two-dimensional (2D) magnetism combined with van der Waals (vdW) heterostructure engineering offers unprecedented opportunities for creating artificial magnetic structures with non-trivial magnetic textures. Further progress hinges on deep understanding of electronic and magnetic properties of 2D magnets at the atomic scale. Although local electronic properties can be probed by scanning tunneling microscopy/spectroscopy (STM/STS), its application to investigate 2D magnetic insulators remains elusive due to absence of a conducting path and their extreme air sensitivity.
View Article and Find Full Text PDF