We present a 2-D plasmonic crystal design with visible band-gap by combining a 2-D photonic crystal with TM band-gap and a silver surface. Simulations show that the presence of the silver surface gives rise to an expanded band-gap. A plasmonic crystal defect cavity with Q ~300 and mode volume ~1.
View Article and Find Full Text PDFWe present a design of plasmonic cavities that consists of two sets of 1-D plasmonic crystal reflectors on a plasmonic trench waveguide. A 'reverse image mold' (RIM) technique was developed to pattern high-resolution silver trenches and to embed emitters at the cavity field maximum, and FDTD simulations were performed to analyze the frequency response of the fabricated devices. Distinct cavity modes were observed from the photoluminescence spectra of the organic dye embedded within these cavities.
View Article and Find Full Text PDFThis paper describes a strategy for the fabrication of functional electronic components (transistors, capacitors, resistors, conductors, and logic gates but not, at present, inductors) that combines a single layer of lithography with angle-dependent physical vapor deposition; this approach is named topographically encoded microlithography (abbreviated as TEMIL). This strategy extends the simple concept of 'shadow evaporation' to reduce the number and complexity of the steps required to produce isolated devices and arrays of devices, and eliminates the need for registration (the sequential stacking of patterns with correct alignment) entirely. The defining advantage of this strategy is that it extracts information from the 3D topography of features in photoresist, and combines this information with the 3D information from the angle-dependent deposition (the angle and orientation used for deposition from a collimated source of material), to create 'shadowed' and 'illuminated' regions on the underlying substrate.
View Article and Find Full Text PDFWe present a general approach to growing ZnO nanowires on arbitrary, high melting point (above 970 degrees C) substrates using the vapor-liquid-solid (VLS) growth mechanism. Our approach utilizes the melting point reduction of sufficiently small (5 nm diameter) Au particles to provide a liquid catalyst without substrate interaction. Using this size-dependent melting effect, we demonstrate catalytic VLS growth of ZnO nanowires on both Ti and Mo foil substrates with aspect ratios in excess of 1000:1.
View Article and Find Full Text PDF