Elevation of intraocular pressure (IOP) due to trabecular meshwork (TM) dysfunction, leading to neurodegeneration, is the pathological hallmark of primary open-angle glaucoma (POAG). Impaired axonal transport is an early and critical feature of glaucomatous neurodegeneration. However, a robust mouse model that replicates these human POAG features accurately has been lacking.
View Article and Find Full Text PDFGlaucoma is a multifactorial disease leading to irreversible blindness. Primary open-angle glaucoma (POAG) is the most common form and is associated with the elevation of intraocular pressure (IOP). Reduced aqueous humor (AH) outflow due to trabecular meshwork (TM) dysfunction is responsible for IOP elevation in POAG.
View Article and Find Full Text PDFNeogenin, a transmembrane receptor, was recently found in kidney cells and immune cells. However, the function of neogenin signaling in kidney is not clear. Mesangial cells (MCs) are a major source of extracellular matrix (ECM) proteins in glomerulus.
View Article and Find Full Text PDFPodocyte injury induced by hyperglycemia is the main cause of kidney dysfunction in diabetic nephropathy. However, the underlying mechanism is unclear. Store-operated Ca entry (SOCE) regulates a diversity of cellular processes in a variety of cell types.
View Article and Find Full Text PDFElevated intraocular pressure (IOP) is a major risk factor in developing primary open angle glaucoma (POAG), which is the most common form of glaucoma. Transforming growth factor-beta 2 (TGFβ2) is a pro-fibrotic cytokine that plays an important role in POAG pathogenesis. TGFβ2 induced extracellular matrix (ECM) production, deposition and endoplasmic reticulum (ER) stress in the trabecular meshwork (TM) contribute to increased aqueous humor (AH) outflow resistance and IOP elevation.
View Article and Find Full Text PDFOcular hypertension (OHT) is a serious adverse effect of the widely prescribed glucocorticoid (GC) therapy and, if left undiagnosed, it can lead to glaucoma and complete blindness. Previously, we have shown that the small chemical chaperone, sodium-4-phenylbutyrate (PBA), rescues GC-induced OHT by reducing ocular endoplasmic reticulum (ER) stress. However, the exact mechanism of how PBA rescues GC-induced OHT is not completely understood.
View Article and Find Full Text PDFRecent studies have focused on the contribution of capillary endothelial TRPV4 channels to pulmonary pathologies, including lung edema and lung injury. However, in pulmonary hypertension (PH), small pulmonary arteries are the focus of the pathology, and endothelial TRPV4 channels in this crucial anatomy remain unexplored in PH. Here, we provide evidence that TRPV4 channels in endothelial cell caveolae maintain a low pulmonary arterial pressure under normal conditions.
View Article and Find Full Text PDFPrimary Open Angle Glaucoma (POAG) is the most common form of glaucoma that leads to irreversible vision loss. Dysfunction of trabecular meshwork (TM) tissue, a major regulator of aqueous humor (AH) outflow resistance, is associated with intraocular pressure (IOP) elevation in POAG. However, the underlying pathological mechanisms of TM dysfunction in POAG remain elusive.
View Article and Find Full Text PDFElevation of intraocular pressure (IOP) due to trabecular meshwork (TM) damage is associated with primary open-angle glaucoma (POAG). Myocilin mutations resulting in elevated IOP are the most common genetic causes of POAG. We have previously shown that mutant myocilin accumulates in the ER and induces chronic ER stress, leading to TM damage and IOP elevation.
View Article and Find Full Text PDFThe underlying pathological mechanisms of glaucomatous trabecular meshwork (TM) damage and elevation of intraocular pressure (IOP) are poorly understood. Here, we report that the chronic endoplasmic reticulum (ER) stress-induced ATF4-CHOP-GADD34 pathway is activated in TM of human and mouse glaucoma. Expression of ATF4 in TM promotes aberrant protein synthesis and ER client protein load, leading to TM dysfunction and cell death.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
October 2020
Purpose: Yap1 encodes an evolutionarily conserved transcriptional coactivator and functions as a down-stream effector of the Hippo signaling pathway that controls tissue size and cell growth. Yap1 contributes to lens epithelial development. However, the effect of Yap1 haplodeficiency on the lens epithelium and its role in the development of cataracts has not been reported.
View Article and Find Full Text PDFBackground: Glaucoma is a leading neurodegenerative disease affecting over 70 million individuals worldwide. Early pathological events of axonal degeneration and retinopathy in response to elevated intraocular pressure (IOP) are limited and not well-defined due to the lack of appropriate animal models that faithfully replicate all the phenotypes of primary open angle glaucoma (POAG), the most common form of glaucoma. Glucocorticoid (GC)-induced ocular hypertension (OHT) and its associated iatrogenic open-angle glaucoma share many features with POAG.
View Article and Find Full Text PDFGlaucoma is the second leading cause of irreversible blindness worldwide. Primary open angle glaucoma (POAG), the most common form of glaucoma, is often associated with elevation of intraocular pressure (IOP) due to the dysfunction of trabecular meshwork (TM) tissues. Currently, an ex vivo human anterior segment perfusion cultured system is widely used to study the effects of glaucoma factors and disease modifying drugs on physiological parameters like aqueous humor (AH) dynamics and IOP homeostasis.
View Article and Find Full Text PDFChronic elevation of intraocular pressure (IOP) is a major risk factor associated with primary open angle glaucoma (POAG), a common form of progressive optic neuropathy that can lead to debilitating loss of vision. Recent studies have identified the role of nitric oxide (NO) in the regulation of IOP, and as a result, several therapeutic ventures are currently targeting enhancement of NO signaling in the eye. Although a low level of NO is important for ocular physiology, excess exogenous NO can be detrimental.
View Article and Find Full Text PDFKey Points: Endothelial cell TRPV4 (TRPV4 ) channels exert a dilatory effect on the resting diameter of resistance mesenteric and pulmonary arteries. Functional intermediate- and small-conductance K (IK and SK) channels and endothelial nitric oxide synthase (eNOS) are present in the endothelium of mesenteric and pulmonary arteries. TRPV4 sparklets preferentially couple with IK/SK channels in mesenteric arteries and with eNOS in pulmonary arteries.
View Article and Find Full Text PDFZika virus (ZIKV) infection during pregnancy leads to devastating fetal outcomes, including neurological (microcephaly) and ocular pathologies such as retinal lesions, optic nerve abnormalities, chorioretinal atrophy, and congenital glaucoma. Only clinical case reports have linked ZIKV infection to causing glaucoma, a major blinding eye disease. In the present study, we have investigated the role of ZIKV in glaucoma pathophysiology using and experimental models.
View Article and Find Full Text PDFElevation of intraocular pressure (IOP) is a serious adverse effect of glucocorticoid (GC) therapy. Increased extracellular matrix (ECM) accumulation and endoplasmic reticulum (ER) stress in the trabecular meshwork (TM) is associated with GC-induced IOP elevation. However, the molecular mechanisms by which GCs induce ECM accumulation and ER stress in the TM have not been determined.
View Article and Find Full Text PDFUnlabelled: Ocular hypertension is a causal risk-factor to developing glaucoma. This is associated with stiffening of the trabecular meshwork (TM), the primary site of resistance to aqueous-humor-outflow. The mechanisms underlying this stiffening or how pathologic extracellular matrix (ECM) affects cell function are poorly understood.
View Article and Find Full Text PDFThe pathological mechanisms underlying increased outflow resistance at the trabecular meshwork (TM) that is responsible for elevating intraocular pressure (IOP) have not been fully delineated. Recent studies have shown that progressive accumulation of misfolded proteins and induction of endoplasmic reticulum (ER) stress is associated with the pathophysiology of glaucomatous TM damage and IOP elevation. We have shown that known causes of human glaucoma, including expression of mutant myocilin or dexamethasone treatment induce abnormal protein accumulation and ER stress in the TM in vitro and in vivo models.
View Article and Find Full Text PDFIncreased synthesis and deposition of extracellular matrix (ECM) proteins in the trabecular meshwork (TM) is associated with TM dysfunction and intraocular pressure (IOP) elevation in glaucoma. However, it is not understood how ECM accumulation leads to TM dysfunction and IOP elevation. Using a mouse model of glucocorticoid (GC)-induced glaucoma, primary human TM cells and human post-mortem TM tissues, we show that increased ECM accumulation leads to endoplasmic reticulum (ER) stress in the TM.
View Article and Find Full Text PDFPrimary open-angle glaucoma (POAG) is a leading cause of irreversible vision loss worldwide, with elevated intraocular pressure (IOP) a major risk factor. Myocilin () dominant gain-of-function mutations have been reported in ∼4% of POAG cases. mutations result in protein misfolding, leading to endoplasmic reticulum (ER) stress in the trabecular meshwork (TM), the tissue that regulates IOP.
View Article and Find Full Text PDFGlucocorticoid (GC)-induced ocular hypertension (OHT) is a serious adverse effect of prolonged GC therapy that can lead to iatrogenic glaucoma and permanent vision loss. An appropriate mouse model can help us understand precise molecular mechanisms and etiology of GC-induced OHT. We therefore developed a novel, simple, and reproducible mouse model of GC-induced OHT.
View Article and Find Full Text PDFPurpose: Abnormal accumulation of extracellular matrix (ECM) in the trabecular meshwork (TM) is associated with decreased aqueous humor outflow facility and IOP elevation in POAG. Previously, we have developed a transgenic mouse model of POAG (Tg-MYOCY437H) by expressing human mutant myocilin (MYOC), a known genetic cause of POAG. The purpose of this study is to examine whether expression of mutant myocilin leads to reduced outflow facility and abnormal ECM accumulation in Tg-MYOCY437H mice and in cultured human TM cells.
View Article and Find Full Text PDFKey issues in corneal epithelium biology are the mechanism for corneal epithelium stem cells to maintain the corneal epithelial homeostasis and wound healing responses, and what are the regulatory molecular pathways involved. There are apparent discrepancies about the locations of the progenitor populations responsible for corneal epithelial self-renewal. We have developed a genetic mouse model to trace the corneal epithelial progenitor lineages during adult corneal epithelial homeostasis and wound healing response.
View Article and Find Full Text PDF