Boron neutron capture therapy (BNCT) is one of the best treatment modalities for glioblastoma multiform that could selectively kill the tumor cells. To be successful in BNCT, it is crucial to have enough B in the tumor. l-boron phenylalanine (l-BPA) targeted thermo-responsive core-shell nanoparticles (NPs) of chitosan-poly(N-isopropylacrylamide) (PNIPAAm) were our idea for endocytosis via sialic acid receptors, and selective delivery of B to glial cells.
View Article and Find Full Text PDFNanotechnology has revolutionized drug delivery in cancer treatment. In this study, novel efficient pH-responsive boron phenylalanine (BPA) targeted nanoparticles (NPs) based on ionic liquid modified chitosan have been introduced for selective mitoxantrone (MTO) delivery to the U87MG glioma cells. Urocanic acid (UA) and imidazolium (Im) based ionic liquids were used for structural modification simultaneously.
View Article and Find Full Text PDFRecently it has been suggested that the presence of boron-11 during proton therapy leads to a significant dose increasement in the BUR. Three high-LET alpha particles with an average energy of 4 MeV are generated at the point of interaction between proton and boron-11. Nevertheless, the cross-section of p+B11→3α interaction is negligible and dose increasement is unlikely.
View Article and Find Full Text PDFAim: The main objective of this study is to evaluate the new proposed boron neutron capture therapy (BNCT) neutron beam based on the use of Tehran Research Reactor medical room to treat deep-seated brain tumors.
Material And Methods: The Snyder head phantom has been simulated through the MCNPX Monte Carlo code to calculate different dose profiles and desired medical merits. The simulation consists of the full geometry of new beamline and the phantom.
J Cancer Res Ther
February 2019
Aims: The main objective of the present research is to analyze the caregiver effective dose during I-131 therapy of thyroid in some different situations using MCNP4C Monte Carlo code.
Patients And Methods: Two separate whole body Medical Internal Radiation Dosimetry (MIRD) phantoms have been defined simultaneously in a single Monte Carlo N-Particle (MCNP) input file as the patient and the caregiver. Two different groups of irradiation situations have been assumed for the caregiver related to the patient, (1) both the patient and the caregiver are standing and (2) the patient is lying in the bed while the caregiver is standing beside the patient.
Aim: Determination of boron neutron capture therapy in-phantom parameters by response matrix (RM) method.
Materials And Methods: In this study, various in-phantom figures-of-merit including therapeutic gain, advantage depth dose rate, advantage depth, therapeutic depth, treatment time, skin dose rate, and skull dose rate have been analyzed using the RM method. This method is based on the division of neutron/gamma spectrum and calculation of various dose components of each energy group.
For designing an appropriate neutron beam, the determination of neutron flux at any irradiation facility is an important key factor. Due to the importance of determining the thermal and epithermal neutron fluxes in a typical thermal column of a reactor, a simple and accurate technique is introduced in this study. Absolute thermal and epithermal fluxes were measured experimentally at a certain point using the foil activation method by neutron bombardment of bare and cadmium covered Au foils.
View Article and Find Full Text PDFAppl Radiat Isot
December 2016
In order to use 14.1MeV neutrons produced by d-T neutron generators, two special and novel Beam Shaping Assemblies (BSA), including multi-layer and hexagonal lattice have been suggested and the effect of them has been investigated by MCNP4C Monte Carlo code. The results show that the proposed BSA can provide the qualified epithermal neutron beam for BNCT.
View Article and Find Full Text PDFAim: Determination of in-phantom quality factors of Tehran research reactor (TRR) boron neutron capture therapy (BNCT) beam.
Materials And Methods: The doses from thermal neutron reactions with 14N and 10B are calculated by kinetic energy released per unit mass approach, after measuring thermal neutron flux using neutron activation technique. Gamma dose is measured using TLD-700 dosimeter.
An epithermal neutron beam has been designed for Boron neutron Capture Therapy (BNCT) at the thermal column of Tehran Research Reactor (TRR) recently. In this paper the whole body effective dose, as well as the equivalent doses of several organs have been calculated in this facility using MCNP4C Monte Carlo code. The effective dose has been calculated by using the absorbed doses determined for each individual organ, taking into account the radiation and tissue weighting factors.
View Article and Find Full Text PDFThe capability of N-isopropylacrylamide (NIPAM) polymer gel to record the dose resulting from boron neutron capture reaction in BNCT was determined. In this regard, three compositions of the gel with different concentrations of (10)B were prepared and exposed to gamma radiation and thermal neutrons. Unlike irradiation with gamma rays, the boron-loaded gels irradiated by neutron exhibited sensitivity enhancement compared with the gels without (10)B.
View Article and Find Full Text PDFAppl Radiat Isot
December 2015
In order to provide an appropriate neutron beam for Boron Neutron Capture Therapy (BNCT), a special Beam Shaping Assembly (BSA) must be designed based on the neutron source specifications. A typical BSA includes moderator, reflector, collimator, thermal neutron filter, and gamma filter. In common BSA, the reflector is considered as a layer which covers the sides of the moderator materials.
View Article and Find Full Text PDFThe feasibility of using a laser-accelerated proton beam to produce a neutron source, via (p,n) reaction, for Boron Neutron Capture Therapy (BNCT) applications has been studied by MCNPX Monte Carlo code. After optimization of the target material and its thickness, a Beam Shaping Assembly (BSA) has been designed and optimized to provide appropriate neutron beam according to the recommended criteria by International Atomic Energy Agency. It was found that the considered laser-accelerated proton beam can provide epithermal neutron flux of ∼2×10(6) n/cm(2) shot.
View Article and Find Full Text PDFGel dosimeters have acquired a unique status in radiotherapy, especially with the advent of the new techniques in which there is a need for three-dimensional dose measurement with high spatial resolution. One of the techniques in which the use of gel dosimeters has drawn the attention of the researchers is the boron neutron capture therapy. Exploring the history of gel dosimeters, this paper sets out to study their role in the boron neutron capture therapy dosimetric process.
View Article and Find Full Text PDFAn irradiation facility has been designed and constructed at Tehran Research Reactor (TRR) for the treatment of shallow tumors using Boron Neutron Capture Therapy (BNCT). TRR has a thermal column which is about 3m in length with a wide square cross section of 1.2×1.
View Article and Find Full Text PDFInvestigation on the use of the Tehran Research Reactor (TRR) as a neutron source for Boron Neutron Capture Therapy (BNCT) has been performed by calculating and measuring energy spectrum and the spatial distribution of neutrons in all external irradiation facilities, including six beam tubes, thermal column, and the medical room. Activation methods with multiple foils and a copper wire have been used for the mentioned measurements. The results show that (1) the small diameter and long length beam tubes cannot provide sufficient neutron flux for BNCT; (2) in order to use the medical room, the TRR core should be placed in the open pool position, in this situation the distance between the core and patient position is about 400 cm, so neutron flux cannot be sufficient for BNCT; and (3) the best facility which can be adapted for BNCT application is the thermal column, if all graphite blocks can be removed.
View Article and Find Full Text PDFOptimization of the Beam Shaping Assembly (BSA) has been performed using the MCNP4C Monte Carlo code to shape the 2.45 MeV neutrons that are produced in the D-D neutron generator. Optimal design of the BSA has been chosen by considering in-air figures of merit (FOM) which consists of 70 cm Fluental as a moderator, 30 cm Pb as a reflector, 2mm (6)Li as a thermal neutron filter and 2mm Pb as a gamma filter.
View Article and Find Full Text PDFA 3-D model for 1 MW TRIGA Mark II research reactor was simulated. Neutron flux parameters were calculated using MCNP-4C code and were compared with experimental results obtained by k(0)-INAA and absolute method. The average values of φ(th),φ(epi), and φ(fast) by MCNP code were (2.
View Article and Find Full Text PDF