ACS Appl Mater Interfaces
February 2023
Tuning the selectivity of CO hydrogenation is of significant scientific interest, especially using nickel-based catalysts. Fundamental insights into CO hydrogenation on Ni-based catalysts demonstrate that CO is a primary intermediate, and product selectivity is strongly dependent on the oxidation state of Ni. Therefore, modifying the electronic structure of the nickel surface is a compelling strategy for tuning product selectivity.
View Article and Find Full Text PDFThe effect of platinum-supported nano-shaped ceria catalysts on methanol partial oxidation and methyl formate product selectivity has been investigated. A Pt-supported CeO2 nanocube catalyst had a higher turnover frequency than nanosphere catalysts; however, nanosphere catalysts showed higher selectivity towards methyl formate. The observed ceria shape effect in catalysis was associated with the shape-dependent Pt dispersion and its oxidation states.
View Article and Find Full Text PDFThe gas-phase vibrational spectra of reactive (H and O) and inert gases (N and Ar) have been studied by near-ambient pressure (NAP) ultraviolet photoelectron spectroscopy (NAPUPS) up to 0.3 mbar pressure. The results obtained are divided into two parts and discussed.
View Article and Find Full Text PDFPt is the best cocatalyst for hydrogen production. It is also well-known that the surface atomic layer is critical for catalysis. To minimize the Pt content as cocatalyst, herein we report on half-a-monolayer of Pt (0.
View Article and Find Full Text PDFCarbon dioxide is a greenhouse gas, and needs to be converted into one of the useful feedstocks, such as carbon monoxide and methanol. We demonstrate the reduction of CO with H as a reducing agent, via a reverse water gas shift (RWGS) reaction, by using a potential and low cost MoC catalyst. MoC was evaluated for CO hydrogenation at ambient pressure as a function of temperature, and CO : H ratio at a gas hourly space velocity (GHSV) of 20 000 h.
View Article and Find Full Text PDFRecyclability is an important aspect for heterogeneous photo-catalysts. Ease of recovery and stability of the photo-catalyst in terms of efficiency over the number of cycles are highly desired and in fact it is ideal if the efficiency is constant and it should not decrease marginally with each cycle. Presented here is a seminal observation in which the photocatalytic activity is shown to improve with increasing number of catalytic cycles (it is 1.
View Article and Find Full Text PDF