Publications by authors named "Karyna Yc"

Dopamine, and specifically the D2 system, has been implicated in timing tasks where the absolute duration of individual time intervals is encoded discretely, yet the role of D2 during beat perception and entrainment remains largely unknown. In this type of timing, a beat is perceived as the pulse that marks equally spaced points in time and, once extracted, produces the tendency in humans to entrain or synchronize their movements to it. Hence, beat-based timing is crucial for musical execution.

View Article and Find Full Text PDF

Beat entrainment is the ability to entrain one's movements to a perceived periodic stimulus, such as a metronome or a pulse in music. Humans have a capacity to predictively respond to a periodic pulse and to dynamically adjust their movement timing to match the varying music tempos. Previous studies have shown that monkeys share some of the human capabilities for rhythmic entrainment, such as tapping regularly at the period of isochronous stimuli.

View Article and Find Full Text PDF

We determined the response properties of neurons in the primate medial premotor cortex that were classified as sensory or motor during isochronous tapping to a visual or auditory metronome, using different target intervals and three sequential elements in the task. The cell classification was based on a warping transformation, which determined whether the cell activity was statistically aligned to sensory or motor events, finding a large proportion of cells classified as sensory or motor. Two distinctive clusters of sensory cells were observed, i.

View Article and Find Full Text PDF

The precise quantification of time in the subsecond scale is critical for many complex behaviors including music and dance appreciation/execution, speech comprehension/articulation, and the performance of many sports. Nevertheless, its neural underpinnings are largely unknown. Recent neurophysiological experiments from our laboratory have shown that the cell activity in the medial premotor areas (MPC) of macaques can represent different aspects of temporal processing during a synchronization-continuation tapping task (SCT).

View Article and Find Full Text PDF