Circovirids have a circular single-stranded DNA genome packed into a small icosahedral capsid. They are classified within two genera, Circovirus and Cyclovirus, in the family Circoviridae (phylum Cressdnaviricota, class Arfiviricetes, order Cirlivirales). Over the last five years, a number of new circovirids have been identified, and, as a result, 54 new species have been created for their classification based on the previously established species demarcation criterion, namely, that viruses classified into different species share less than 80% genome-wide pairwise sequence identity.
View Article and Find Full Text PDFTurtlegrass virus X, which infects the seagrass , is the only potexvirus known to infect marine flowering plants. We investigated potexvirus distribution in seagrasses using a degenerate reverse transcription polymerase chain reaction (RT-PCR) assay originally designed to capture potexvirus diversity in terrestrial plants. The assay, which implements Potex-5 and Potex-2RC primers, successfully amplified a 584 nt RNA-dependent RNA polymerase (RdRp) fragment from TVX-infected seagrasses.
View Article and Find Full Text PDFAntimicrobial resistant (AMR) pathogens represent urgent threats to human health, and their surveillance is of paramount importance. Metagenomic next generation sequencing (mNGS) has revolutionized such efforts, but remains challenging due to the lack of open-access bioinformatics tools capable of simultaneously analyzing both microbial and AMR gene sequences. To address this need, we developed the CZ ID AMR module, an open-access, cloud-based workflow designed to integrate detection of both microbes and AMR genes in mNGS and whole-genome sequencing (WGS) data.
View Article and Find Full Text PDFAntimicrobial resistant (AMR) pathogens represent urgent threats to human health, and their surveillance is of paramount importance. Metagenomic next generation sequencing (mNGS) has revolutionized such efforts, but remains challenging due to the lack of open-access bioinformatics tools capable of simultaneously analyzing both microbial and AMR gene sequences. To address this need, we developed the Chan Zuckerberg ID (CZ ID) AMR module, an open-access, cloud-based workflow designed to integrate detection of both microbes and AMR genes in mNGS and whole-genome sequencing (WGS) data.
View Article and Find Full Text PDFBecause parasites have an inextricable relationship with their host, they have the potential to serve as viral reservoirs or facilitate virus host shifts. And yet, little is known about viruses infecting parasitic hosts except for blood-feeding arthropods that are well-known vectors of zoonotic viruses. Herein, we uncovered viruses of flatworms (phylum Platyhelminthes, group Neodermata) that specialize in parasitizing vertebrates and their ancestral free-living relatives.
View Article and Find Full Text PDFInterest in developing food, feed, and other useful products from farmed insects has gained remarkable momentum in the past decade. Crickets are an especially popular group of farmed insects due to their nutritional quality, ease of rearing, and utility. However, production of crickets as an emerging commodity has been severely impacted by entomopathogenic infections, about which we know little.
View Article and Find Full Text PDFParasitic flatworms (Neodermata) infect all vertebrates and represent a significant health and economic burden worldwide due to the debilitating diseases they cause. This study sheds light for the first time into the virome of a tapeworm by describing six novel RNA virus candidate species associated with Schistocephalus solidus, including three negative-strand RNA viruses (order Jingchuvirales, Mononegavirales, and Bunyavirales) and three double-stranded RNA viruses. Using in vitro culture of S.
View Article and Find Full Text PDFSpiders (order Araneae, class Arachnida) are an important group of predatory arthropods in terrestrial ecosystems that have been recently identified as an untapped reservoir of single-stranded (ss)DNA viruses. Specifically, spiders harbour a diversity of ssDNA viruses encoding a replication-associated protein (Rep) within a circular genome. However, little is known about the ecology of novel circular Rep-encoding ssDNA (CRESS DNA) viruses.
View Article and Find Full Text PDFHere, we present the complete genome sequences of three circular replication-associated protein (Rep)-encoding single-stranded DNA (CRESS DNA) viruses detected in secondary treated and disinfected wastewater effluent. The discovered viruses, named astewater RESS NA irus (WCDV)-1 to -3, represent novel viral species that seem to persist in wastewater effluent.
View Article and Find Full Text PDFWhile single-stranded DNA (ssDNA) was once thought to be a relatively rare genomic architecture for viruses, modern metagenomics sequencing has revealed circular ssDNA viruses in most environments and in association with diverse hosts. In particular, circular ssDNA viruses encoding a homologous replication-associated protein (Rep) have been identified in the majority of eukaryotic supergroups, generating interest in the ecological effects and evolutionary history of circular Rep-encoding ssDNA viruses (CRESS DNA) viruses. This review surveys the explosion of sequence diversity and expansion of eukaryotic CRESS DNA taxonomic groups over the last decade, highlights similarities between the well-studied geminiviruses and circoviruses with newly identified groups known only through their genome sequences, discusses the ecology and evolution of eukaryotic CRESS DNA viruses, and speculates on future research horizons.
View Article and Find Full Text PDFWe present an extension of the Minimum Information about any (x) Sequence (MIxS) standard for reporting sequences of uncultivated virus genomes. Minimum Information about an Uncultivated Virus Genome (MIUViG) standards were developed within the Genomic Standards Consortium framework and include virus origin, genome quality, genome annotation, taxonomic classification, biogeographic distribution and in silico host prediction. Community-wide adoption of MIUViG standards, which complement the Minimum Information about a Single Amplified Genome (MISAG) and Metagenome-Assembled Genome (MIMAG) standards for uncultivated bacteria and archaea, will improve the reporting of uncultivated virus genomes in public databases.
View Article and Find Full Text PDFHere, we describe four novel circular single-stranded DNA viruses discovered in fungus-farming termites ( sp.). The viruses, named termite-associated circular virus 1 (TaCV-1) through TaCV-4, are most similar to members of the family and were widely detected in African termite mounds.
View Article and Find Full Text PDFViral metagenomic analysis of heating, ventilation, and air conditioning (HVAC) filters recovered the near-complete genome sequence of a novel virus, named HVAC-associated NA irus 1 (HVAC-RV1). The HVAC-RV1 genome is most similar to those of picorna-like viruses identified in arthropods but encodes a small domain observed only in negative-sense single-stranded RNA viruses.
View Article and Find Full Text PDFThe characteristics and risk factors of pigeon paramyxovirus type 1 (PPMV-1) infection in humans are poorly known. We performed virological, pathological, and epidemiological analyses of a Dutch case, and compared the results with those of a US case. Both infections occurred in transplant patients under immunosuppressive therapy and caused fatal respiratory failure.
View Article and Find Full Text PDFEnviron Sci Technol
February 2018
Diverse bacterial and fungal communities inhabit human-occupied buildings and circulate in indoor air; however, viral diversity in these man-made environments remains largely unknown. Here we investigated DNA and RNA viruses circulating in the air of 12 university dormitory rooms by analyzing dust accumulated over a one-year period on heating, ventilation, and air conditioning (HVAC) filters. A metagenomic sequencing approach was used to determine the identity and diversity of viral particles extracted from the HVAC filters.
View Article and Find Full Text PDFThe genome sequence of the obligate chemolithoautotroph Hydrogenovibrio crunogenus paradoxically predicts a complete oxidative citric acid cycle (CAC). This prediction was tested by multiple approaches including whole cell carbon assimilation to verify obligate autotrophy, phylogenetic analysis of CAC enzyme sequences and enzyme assays. Hydrogenovibrio crunogenus did not assimilate any of the organic compounds provided (acetate, succinate, glucose, yeast extract, tryptone).
View Article and Find Full Text PDF