Background: Human tumour xenografts in immune compromised mice are widely used as cancer models because they are easy to reproduce and simple to use in a variety of pre-clinical assessments. Developments in nanomedicine have led to the use of tumour xenografts in testing nanoscale delivery devices, such as nanoparticles and polymer-drug conjugates, for targeting and efficacy via the enhanced permeability and retention (EPR) effect. For these results to be meaningful, the hyperpermeable vasculature and reduced lymphatic drainage associated with tumour pathophysiology must be replicated in the model.
View Article and Find Full Text PDFDrug delivery to solid tumours remains a challenge because both tumour physiology and drug solubility are unfavourable. Engineered materials can provide the basis for drug reformulation, incorporating active compounds and modulating their pharmacokinetic and biodistribution behaviour. To this end, we encapsulated docetaxel, a poorly soluble taxane drug, in a self-assembled polymeric nanoparticle micelle of poly(2-methyl-2-carboxytrimethylene carbonate-co-D,L-lactide)-graft-poly(ethylene glycol) (poly(TMCC-co-LA)-g-PEG).
View Article and Find Full Text PDF