Background: Applying deep brain stimulation (DBS) to several brain regions has been investigated in attempts to treat highly treatment-resistant depression, with variable results. Our initial pilot data suggested that the bed nucleus of the stria terminalis (BNST) could be a promising therapeutic target.
Objective: The aim of this study was to gather blinded data exploring the efficacy of applying DBS to the BNST in patients with highly refractory depression.
Objective: Deep brain stimulation (DBS) and whether it alters patient personality is a much-debated topic within academic literature, yet rarely explored with those directly involved. This study qualitatively examined how DBS for treatment-resistant depression impacts patient personality, self-concept, and relationships from the perspectives of both patients and caregivers.
Methods: A prospective qualitative design was used.
Objective: Understanding the impact of lifestyle on mental illness symptoms is important for informing psycho-education and developing interventions which target mental and physical comorbidities. Obsessive-compulsive and related disorders can have a significant impact on health-related quality of life and physical health. However, our understanding of the impact of lifestyle on obsessive-compulsive symptoms and broader compulsive and impulsive problematic repetitive behaviours is limited.
View Article and Find Full Text PDFBackground: Poor mental health is a state of psychological distress that is influenced by lifestyle factors such as sleep, diet, and physical activity. Compulsivity is a transdiagnostic phenotype cutting across a range of mental illnesses including obsessive-compulsive disorder, substance-related and addictive disorders, and is also influenced by lifestyle. Yet, how lifestyle relates to compulsivity is presently unknown, but important to understand to gain insights into individual differences in mental health.
View Article and Find Full Text PDFHow "success" is defined in clinical trials of deep brain stimulation (DBS) for refractory psychiatric conditions has come into question. Standard quantitative psychopathology measures are unable to capture all changes experienced by patients and may not reflect subjective beliefs about the benefit derived. The decision to undergo DBS for treatment-resistant depression (TRD) is often made in the context of high desperation and hopelessness that can challenge the informed consent process.
View Article and Find Full Text PDFBackground: Studies are increasingly investigating the therapeutic effects of deep brain stimulation (DBS) applied to a variety of brain regions in the treatment of patients with highly treatment refractory depression. Limited research to date has investigated the therapeutic potential of DBS applied to the Bed Nucleus Of Stria Terminalis (BNST).
Objective: The aim of this study was to explore the therapeutic potential of DBS applied to the BNST.
We studied the afferent connections of two cytoarchitectural subdivisions of the caudolateral frontal cortex, areas 6Va and 8C, in marmoset monkeys. These areas received connections from the same set of thalamic nuclei, including main inputs from the ventral lateral and ventral anterior complexes, but differed in their patterns of corticocortical connections. Areas 8C and 6Va had reciprocal interconnections, and received similar proportions of afferents from premotor areas 6M and 6DC, and from the prefrontal cortex.
View Article and Find Full Text PDFWe examined the pattern of retrograde tracer distribution in the claustrum following intracortical injections into the frontal pole (area 10), and in dorsal (area 9), and ventral lateral (area 12) regions of the rostral prefrontal cortex in the tufted capuchin monkey (Cebus apella). The resulting pattern of labeled cells was assessed in relation to the three-dimensional geometry of the claustrum, as well as recent reports of claustrum-prefrontal connections in other primates. Claustrum-prefrontal projections were extensive, and largely concentrated in the ventral half of the claustrum, especially in the rostral 2/3 of the nucleus.
View Article and Find Full Text PDFCorticocortical projections to the caudal and rostral areas of dorsal premotor cortex (6DC and 6DR, also known as F2 and F7) were studied in the marmoset monkey. Both areas received their main thalamic inputs from the ventral anterior and ventral lateral complexes, and received dense projections from the medial premotor cortex. However, there were marked differences in their connections with other cortical areas.
View Article and Find Full Text PDFIn primates the primary motor cortex (M1) forms a topographic map of the body, whereby neurons in the medial part of this area control movements involving trunk and hindlimb muscles, those in the intermediate part control movements involving forelimb muscles, and those in the lateral part control movements of facial and other head muscles. This topography is accompanied by changes in cytoarchitectural characteristics, raising the question of whether the anatomical connections also vary between different parts of M1. To address this issue, we compared the patterns of cortical afferents revealed by retrograde tracer injections in different locations within M1 of marmoset monkeys.
View Article and Find Full Text PDFContemporary studies recognize 3 distinct cytoarchitectural and functional areas within the Brodmann area 8 complex, in the caudal prefrontal cortex: 8b, 8aD, and 8aV. Here, we report on the quantitative characteristics of the cortical projections to these areas, using injections of fluorescent tracers in marmoset monkeys. Area 8b was distinct from both 8aD and 8aV due to its connections with medial prefrontal, anterior cingulate, superior temporal polysensory, and ventral midline/retrosplenial areas.
View Article and Find Full Text PDFThe subcortical projections to the marmoset frontal pole were mapped with the use of fluorescent tracer injections. The main thalamic projections, which originated in both the magnocellular and parvocellular subdivisions of the mediodorsal nucleus, were topographically organized. Our results suggest the existence of a third, caudal subdivision of this nucleus, which is likely to be homologous to the macaque's pars densocellularis.
View Article and Find Full Text PDFThe current hierarchical model of primate auditory cortical processing proposes a core of 'primary-like' areas, which is surrounded by secondary (belt) and tertiary (parabelt) regions. The rostrotemporal auditory cortical area (RT) remains the least well characterized of the three proposed core areas, and its functional organization has only recently come under scrutiny. Here we used injections of anterograde and retrograde tracers in the common marmoset (Callithrix jacchus) to examine the connectivity of RT and its adjacent areas.
View Article and Find Full Text PDF