Context: This research investigates two critical areas, providing valuable insights into the properties and interactions of boron nitride nanotubes (BNNTs). Initially, a variety of BNNT structures (BNNT(m,n)_x, where m = 3, 5, 7; n = 0, 3, 5, 7; x = 3-9) with different lengths and diameters are explored to understand their electronic properties. The study then examines the interactions between these nanotubes and several gases (CO, CO, CSO, HO, NO, NO, NO, O, ONH, and SO) to identify the most stable molecular configurations using the bee colony algorithm for global optimization.
View Article and Find Full Text PDFThe effects of the curvature parameters on the energy eigenvalues and thermodynamic properties of quantum pseudoharmonic oscillator are investigated within the framework of nonrelativistic quantum mechanics. By employing Nikiforov-Uvarov method, the energy spectra are obtained and used to study the ordinary statistics and q-deformed superstatistics as a function of temperature in the presence and absence of the curvature parameters. It is shown that the q-deformed supertatistics properties of the quantum pseudoharmonic oscillator reduce to the ordinary statistical properties in the absence of the deformation parameter.
View Article and Find Full Text PDFHerein we describe an effective route for the degradation of methyl green (MG) dye under visible light illumination by pristine and strontium (Sr)-doped zinc oxide (ZnO) photocatalysts (synthesized by the simple chemical precipitation method). The x-ray diffraction structural analysis has confirmed that both photocatalysts exhibit the hexagonal wurtzite structure; without any additional phase formation in Sr-doped ZnO, in particular. The optical properties of the synthesized photocatalysts have been investigated using UV-vis absorption spectroscopy in the wavelength range of 250-800 nm.
View Article and Find Full Text PDF