The regioselective deiodinations of L-thyroxine (T4) play key roles in the thyroid hormone homeostasis. These reactions are catalyzed by three isoforms of the selenoenzymes, iodothyronine deiodinases (Dio1, Dio2 and Dio3), which are highly homologous in nature. Dio1 mediates 5'- or 5-deiodinations of T4 to produce T3 and rT3, respectively.
View Article and Find Full Text PDFThyroid hormones (THs) are key players in the endocrine system and play pivotal roles in carbohydrate and fat metabolism, protein synthesis, overall growth, and brain development. The thyroid gland predominantly produces thyroxine or 3,5,3',5'-tetraiodothyronine (T4) as a prohormone; three isoforms of a mammalian selenoenzyme-iodothyronine deiodinase (DIO1, DIO2 and DIO3)-catalyze the regioselective deiodination of T4 to produce biologically active and inactive metabolites. Whereas DIO1 catalyzes both 5- and 5'-deiodination of T4, DIO2 and DIO3 selectively mediate 5- and 5'-deiodination, respectively.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
June 2016
Thyroid hormones (THs) are secreted by the thyroid gland. They control lipid, carbohydrate, and protein metabolism, heart rate, neural development, as well as cardiovascular, renal, and brain functions. The thyroid gland mainly produces l-thyroxine (T4) as a prohormone, and 5'-deiodination of T4 by iodothyronine deiodinases generates the nuclear receptor binding hormone T3.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
June 2015
Iodothyronine deiodinases are selenoenzymes which regulate the thyroid hormone homeostasis by catalyzing the regioselective deiodination of thyroxine (T4). Synthetic deiodinase mimetics are important not only to understand the mechanism of enzyme catalysis, but also to develop therapeutic agents as abnormal thyroid hormone levels have implications in different diseases, such as hypoxia, myocardial infarction, critical illness, neuronal ischemia, tissue injury, and cancer. Described herein is that the replacement of sulfur/selenium atoms in a series of deiodinase mimetics by tellurium remarkably alters the reactivity as well as regioselectivity toward T4.
View Article and Find Full Text PDF