Background: Drug discovery requires the use of hybrid technologies for the discovery of new chemical substances. One of those interesting strategies is QSAR via applying an artificial intelligence system that effectively predicts how chemical alterations can impact biological activity via in-silico.
Aim: Our present study aimed to work on a trending machine learning approach with a new opensource data analysis python script for the discovery of anticancer lead via building the QSAR model by using 53 compounds of thiazole derivatives.