Publications by authors named "Karunan Joseph"

Background: Oral health is closely linked to systemic conditions, particularly non-communicable diseases (NCDs), which can exacerbate oral issues. Essential oils (EOs) have emerged as potential alternatives for oral health due to their antibacterial, anti-inflammatory, and antioxidant properties. Among these, rosemary essential oil (REO) shows promise due to its various biological activities.

View Article and Find Full Text PDF

Textile-based microfluidic biosensors represent an innovative fusion of various multidisciplinary fields, including bioelectronics, material sciences, and microfluidics. Their potential in biomedicine is significant as they leverage textiles to achieve high demands of biocompatibility with the human body and conform to the irregular surfaces of the body. In the field of microfluidics, fabric coated with hydrophobic materials serves as channels through which liquids are transferred in precise amounts to the sensing element, which in this case is a biosensor.

View Article and Find Full Text PDF

BACKGROUND This study explored the integration of conductive threads into a microfluidic compact disc (CD), developed using the xurographic method, for a potential sweat biosensing platform. MATERIAL AND METHODS The microfluidic CD platform, fabricated using the xurographic method with PVC films, included venting channels and conductive threads linked to copper electrodes. With distinct microfluidic sets for load and metering, flow control, and measurement, the CD's operation involved spinning for sequential liquid movement.

View Article and Find Full Text PDF

Diagnosing oral diseases at an early stage may lead to better preventive treatments, thus reducing treatment burden and costs. This paper introduces a systematic design of a microfluidic compact disc (CD) consisting of six unique chambers that run simultaneously from sample loading, holding, mixing and analysis. In this study, the electrochemical property changes between real saliva and artificial saliva mixed with three different types of mouthwashes (i.

View Article and Find Full Text PDF

Centrifugal microfluidic platforms are widely used in various advanced processes such as biomedical diagnostics, chemical analysis and drug screening. This paper investigates the effect of liquid density on the burst frequency of the centrifugal microfluidic platform. This effect is experimentally investigated and compared to theoretical values.

View Article and Find Full Text PDF

Recent advances in the field of centrifugal microfluidic disc suggest the need for electrical interface in the disc to perform active biomedical assays. In this paper, we have demonstrated an active application powered by the energy harvested from the rotation of the centrifugal microfluidic disc. A novel integration of power harvester disc onto centrifugal microfluidic disc to perform localized heating technique is the main idea of our paper.

View Article and Find Full Text PDF

The development of micro-power generators for centrifugal microfluidic discs enhances the platform as a green point-of-care diagnostic system and eliminates the need for attaching external peripherals to the disc. In this work, we present micro-power generators that harvest energy from the disc's rotational movement to power biomedical applications on the disc. To implement these ideas, we developed two types of micro-power generators using piezoelectric films and an electromagnetic induction system.

View Article and Find Full Text PDF

This paper introduces novel vacuum/compression valves (VCVs) utilizing paraffin wax. A VCV is implemented by sealing the venting channel/hole with wax plugs (for normally-closed valve), or to be sealed by wax (for normally-open valve), and is activated by localized heating on the CD surface. We demonstrate that the VCV provides the advantages of avoiding unnecessary heating of the sample/reagents in the diagnostic process, allowing for vacuum sealing of the CD, and clear separation of the paraffin wax from the sample/reagents in the microfluidic process.

View Article and Find Full Text PDF