Publications by authors named "Karunakaran A Kalesh"

Pathogenic antibiotic resistant bacteria pose one of the most important health challenges of the 21st century. The overuse and abuse of antibiotics coupled with the natural evolutionary processes of bacteria has led to this crisis. Only incremental advances in antibiotic development have occurred over the last 30 years.

View Article and Find Full Text PDF

Peptide therapeutics has made tremendous progress in the past decade. Many of the inherent weaknesses of peptides which hampered their development as therapeutics are now more or less effectively tackled with recent scientific and technological advancements in integrated drug discovery settings. These include recent developments in synthetic organic chemistry, high-throughput recombinant production strategies, highresolution analytical methods, high-throughput screening options, ingenious drug delivery strategies and novel formulation preparations.

View Article and Find Full Text PDF

Artemisinin and its derivatives (collectively termed as artemisinins) are among the most important and effective antimalarial drugs, with proven safety and efficacy in clinical use. Beyond their antimalarial effects, artemisinins have also been shown to possess selective anticancer properties, demonstrating cytotoxic effects against a wide range of cancer types both in vitro and in vivo. These effects appear to be mediated by artemisinin-induced changes in multiple signaling pathways, interfering simultaneously with multiple hallmarks of cancer.

View Article and Find Full Text PDF

Sulforaphane is a small molecule isothiocyanate which exhibits anticancer potential, yet its biological targets remain poorly understood. Here we employ a competition-based chemical proteomics strategy to profile sulforaphane's targets and identify over 500 targets along with their relative affinities. These targets provide a new set of mediators for sulforaphane's bioactivity, and aid understanding of its complex mode of action.

View Article and Find Full Text PDF

Cyclic peptides, owing to their good stability, high resistance to exo- and to some extent endo-peptidases, enhanced binding affinity and selectivity towards target biomolecules, are actively investigated as biochemical tools and therapeutic agents. In this review, we discuss various commonly utilized synthetic strategies for cyclic peptides and peptoids (peptidomimetics), their important screening methods to identify the bioactive cyclic peptides and peptoids such as combinatorial beadbased peptide library, phage display, mRNA display etc. and recent advances in their applications as bioactive compounds.

View Article and Find Full Text PDF

Polyhistidine peptides are effective ligands to coat quantum dots (QDs). It is known that both the number of histidine (His) residues repeats and their structural arrangements in a peptide ligand play important roles in the assembly of the peptide onto CdSe/ZnS QDs. However, due to steric hindrance, a peptide sequence with more than six His residue tandem repeats would hardly coordinate well with Zn(2+) in the QD shell to further enhance the binding affinity.

View Article and Find Full Text PDF

Natural and traditional medicines, being a great source of drugs and drug leads, have regained wide interests due to the limited success of high-throughput screening of compound libraries in the past few decades and the recent technology advancement. Many drugs/bioactive compounds exert their functions through interaction with their protein targets, with more and more drugs showing their ability to target multiple proteins, thus target identification has an important role in drug discovery and biomedical research fields. Identifying drug targets not only furthers the understanding of the mechanism of action (MOA) of a drug but also reveals its potential therapeutic applications and adverse side effects.

View Article and Find Full Text PDF

Zerumbone is a phytochemical with diverse biological activities ranging from anti-inflammatory to anti-cancer properties; however, to date the cellular targets of this important compound have remained elusive. Here we report the global protein target spectrum of zerumbone in living cancer cells using competitive activity-based protein profiling of a novel cell-permeable clickable probe, combined with quantitative mass spectrometry.

View Article and Find Full Text PDF

Protein lipidation is unique amongst post-translational modifications (PTMs) in enabling direct interaction with cell membranes, and is found in every form of life. Lipidation is important in normal function and in disease, but its intricate interplay with disease context presents a challenging for drug development. Global whole-proteome profiling of protein lipidation lies beyond the range of standard methods, but is well-suited to metabolic tagging with small 'clickable' chemical reporters that do not disrupt metabolism and function; chemoselective reactions are then used to add multifunctional labels exclusively to tagged-lipidated proteins.

View Article and Find Full Text PDF

A succinylation-specific photo-cross-linking peptide probe has been developed for the NAD(+)-dependent hydrolase Sirtuin 5. The probe, not only displayed robust labelling performance with purified Sirt5, but also enabled sensitive detection of the hydrolase in the presence of large excess of cellular proteins. It is anticipated that this probe, and future generations of it, will provide useful chemical tools for the functional analysis of Sirt5 and for the recently discovered PTM of lysine succinylation.

View Article and Find Full Text PDF

Phytochemicals and their synthetic derivatives are making a significant contribution in modern drug discovery programs by targeting several human diseases, including cancer. Most of these natural compounds are often multitargeted in nature, which is generally a very desirable property for cancer therapy, as carcinomas typically involve dysregulation of multiple genes and associated cell-signaling pathways at various stages of initiation, progression and metastasis. Additionally, these natural agents generally have lower side-effects, are readily available and hence are cost effective.

View Article and Find Full Text PDF

Of the thousands of known chemical reactions, a handful of reactions, called "click" reactions, stand out with features such as good chemoselectivity, good solvent compatibilities, modularity, minimum synthetic demands, bioorthogonality and high yields. Among them, the Cu(i)-catalyzed 1,3-dipolar cycloaddition reaction between azides and terminal alkynes has emerged as a powerful tool in chemical biology and proteomics. This perspective surveys the significant contributions of click chemistry in catalomics (a sub-area in chemical proteomics), with special emphasis on activity-based protein profiling (ABPP), posttranslational modifications (PTMs) and enzyme inhibitor developments.

View Article and Find Full Text PDF

Two different strategies, namely a dialdehyde-based cross-linking and photo-affinity labeling, have been developed to generate small molecule activity-based probes (ABPs) for the Abelson (Abl) tyrosine kinase, of which probe 13, derived from the photo-affinity approach, showed specific labeling of Abl kinase present in a crude mammalian proteome.

View Article and Find Full Text PDF

Synthesis of a novel unnatural amino acid (2-FMPT) for the solid-phase synthesis of peptide-based probes suitable for target-specific activity-based profiling of protein tyrosine phosphatases from crude proteomes is reported.

View Article and Find Full Text PDF

Protein kinases catalyze the phosphorylation of serine, threonine, tyrosine and histidine residues in proteins. Aberrant regulation of kinase activity has been implicated in many diseases including cancer. Thus development of new strategies for kinase inhibitor design remains an active area of research with direct relevance to drug development.

View Article and Find Full Text PDF

A approximately 3500-member library of bidentate inhibitors against protein tyrosine phosphatases (PTPs) was rapidly assembled using click chemistry. Subsequent high-throughput screening had led to the discovery of highly potent (K(i) as low as 150 nM) and selective MptpB inhibitors, some of which represent the most potent MptpB inhibitors developed to date.

View Article and Find Full Text PDF

A key challenge in current drug discovery is the development of high-throughput (HT) amenable chemical reactions that allow rapid synthesis of diverse chemical libraries of enzyme inhibitors. The Cu(I)-catalyzed, 1,3-dipolar cycloaddition between an azide and an alkyne, better known as "click chemistry", is one such method that has received the most attention in recent years. Despite its popularity, there is still a lack of robust and efficient chemical strategies that give access to diverse libraries of azide-containing building blocks (key components in click chemistry).

View Article and Find Full Text PDF

This protocol describes the step-by-step procedures for the efficient assembly of bidentate inhibitor libraries of a target enzyme, using the so-called 'click chemistry' between an alkyne-bearing core group and an azide-modified peripheral group, followed by direct biological screening for the identification of potential 'hits'. The reaction is highlighted by its modularity, high efficiency (approximately 100% yield in most cases) and tolerance toward many functional groups present in the fragments, as well as biocompatibility (typically carried out in aqueous conditions with small amounts of biocompatible catalysts). The approach consists of three steps: (i) chemical synthesis of alkyne-bearing protein tyrosine phosphatase or matrix metalloprotease core groups and diverse azide-modified peripheral groups; (ii) click chemistry to assemble the bidentate inhibitor libraries; and (iii) direct screening of the libraries with target enzymes using 384-well microplate assays.

View Article and Find Full Text PDF