IEEE Trans Biomed Circuits Syst
September 2024
Ultrasound-based Hand Gesture Recognition has gained significant attention in recent years. While static gesture recognition has been extensively explored, only a few works have tackled the task of movement regression for real-time tracking, despite its importance for the development of natural and smooth interaction strategies. In this paper, we demonstrate the regression of 3 hand-wrist Degrees of Freedom (DoFs) using a lightweight, A-mode-based, truly wearable US armband featuring four transducers and WULPUS, an ultra-low-power acquisition device.
View Article and Find Full Text PDFIEEE Trans Biomed Circuits Syst
September 2024
Driven by the progress in efficient embedded processing, there is an accelerating trend toward running machine learning models directly on wearable Brain-Machine Interfaces (BMIs) to improve portability and privacy and maximize battery life. However, achieving low latency and high classification performance remains challenging due to the inherent variability of electroencephalographic (EEG) signals across sessions and the limited onboard resources. This work proposes a comprehensive BMI workflow based on a CNN-based Continual Learning (CL) framework, allowing the system to adapt to inter-session changes.
View Article and Find Full Text PDFSpike extraction by blind source separation (BSS) algorithms can successfully extract physiologically meaningful information from the sEMG signal, as they are able to identify motor unit (MU) discharges involved in muscle contractions. However, BSS approaches are currently restricted to isometric contractions, limiting their applicability in real-world scenarios. We present a strategy to track MUs across different dynamic hand gestures using adaptive independent component analysis (ICA): first, a pool of MUs is identified during isometric contractions, and the decomposition parameters are stored; during dynamic gestures, the decomposition parameters are updated online in an unsupervised fashion, yielding the refined MUs; then, a Pan-Tompkins-inspired algorithm detects the spikes in each MUs; finally, the identified spikes are fed to a classifier to recognize the gesture.
View Article and Find Full Text PDFRecent studies show that the integrity of core perceptual and cognitive functions may be tested in a short time with Steady-State Visual Evoked Potentials (SSVEP) with low stimulation frequencies, between 1 and 10 Hz. Wearable EEG systems provide unique opportunities to test these brain functions on diverse populations in out-of-the-lab conditions. However, they also pose significant challenges as the number of EEG channels is typically limited, and the recording conditions might induce high noise levels, particularly for low frequencies.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2022
Low-power wearable systems are essential for medical and industrial applications, but they face crucial implementation challenges when providing energy-efficient compact design while increasing the number of available channels, sampling rate and overall processing power. This work presents a small (39×41mm) wireless embedded low-power HMI device for ExG signals, offering up to 16 channels sampled at up to 4kSPS. By virtue of the high sampling rate and medical-grade signal quality (i.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
November 2021
Human machine interfaces follow machine learning approaches to interpret muscles states, mainly from electrical signals. These signals are easy to collect with tiny devices, on tight power budgets, interfaced closely to the human skin. However, natural movement behavior is not only determined by muscle activation, but it depends on an orchestration of several subsystems, including the instantaneous length of muscle fibers, typically inspected by means of ultrasound (US) imaging systems.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
November 2021
Annu Int Conf IEEE Eng Med Biol Soc
July 2020
Research on biosignal (ExG) analysis is usually performed with expensive systems requiring connection with external computers for data processing. Consumer-grade low-cost wearable systems for bio-potential monitoring and embedded processing have been presented recently, but are not considered suitable for medical-grade analyses. This work presents a detailed quantitative comparative analysis of a recently presented fully-wearable low-power and low-cost platform (BioWolf) for ExG acquisition and embedded processing with two researchgrade acquisition systems, namely, ANTNeuro (EEG) and the Noraxon DTS (EMG).
View Article and Find Full Text PDFHand movement classification via surface electromyographic (sEMG) signal is a well-established approach for advanced Human-Computer Interaction. However, sEMG movement recognition has to deal with the long-term reliability of sEMG-based control, limited by the variability affecting the sEMG signal. Embedded solutions are affected by a recognition accuracy drop over time that makes them unsuitable for reliable gesture controller design.
View Article and Find Full Text PDFIEEE Trans Biomed Circuits Syst
October 2019
Advancements in digital signal processing (DSP) and machine learning techniques have boosted the popularity of brain-computer interfaces (BCIs), where electroencephalography is a widely accepted method to enable intuitive human-machine interaction. Nevertheless, the evolution of such interfaces is currently hampered by the unavailability of embedded platforms capable of delivering the required computational power at high energy efficiency and allowing for a small and unobtrusive form factor. To fill this gap, we developed BioWolf, a highly wearable (40 mm × 20 mm × 2 mm) BCI platform based on Mr.
View Article and Find Full Text PDFThis paper presents a wearable electromyographic gesture recognition system based on the hyperdimensional computing paradigm, running on a programmable parallel ultra-low-power (PULP) platform. The processing chain includes efficient on-chip training, which leads to a fully embedded implementation with no need to perform any offline training on a personal computer. The proposed solution has been tested on 10 subjects in a typical gesture recognition scenario achieving 85% average accuracy on 11 gestures recognition, which is aligned with the state-of-the-art, with the unique capability of performing online learning.
View Article and Find Full Text PDF