J Mech Behav Biomed Mater
December 2024
Young's modulus of elasticity (or stiffness, E) is an important material property for many applications of polymers and polymer-matrix composites. The common methods of measuring E are by measuring the velocity of ultrasonic pulses through the material or by resistance to flexure, but it is difficult for ultrasound to penetrate polymers that contain filler particles, and flexural measurements require large specimens that may not mimic the clinical case. Thus, it may be difficult to determine E using conventional techniques.
View Article and Find Full Text PDFObjectives: Previous studies have reported the fractal dimensional increment of glass-ceramic fracture surfaces. The objective of this study was to determine the relationship between fracture toughness and fractal dimensional increment of two dental glass-ceramics with different volume fraction of crystals and different fracture surface roughness.
Methods: Bar-shaped specimens were prepared from lithium disilicate (LDS) and nanofluorapatite (NFA) glass-ceramics.
Purpose: To characterize experimental glass fiber-reinforced resin-based composites (GFIR-isophthalic; and GFOR-orthophthalic), evaluating their mechanical behavior and adhesive potential to ceramic in comparison to human dentin and a traditional glass fiber-reinforced epoxy resin (G10).
Methods: Density (ρ), elastic modulus (E), and Poisson's ratio (ν) were evaluated using 2 mm thick specimens from GFIR, GFOR, human dentin and G10. Biaxial flexural strength (δf), Knoop hardness and surface topography under scanning electron microscopy (SEM) were assessed for GFIR and GFOR specimens.
Objectives: Previous studies have shown that the fracture toughness of ceramics can be determined from the fractal dimensions (D) of their fracture surfaces and that the surface should be leveled to obtain an accurate D measurement. This study was to determine the effects of leveling operations and distance from the failure origin on the D values.
Methods: Twelve clinically failed zirconia implants from four different manufacturers: Axis Biodental (n=7), Z-Systems (n=3), Straumann (n=1), and Swiss Dental Solutions (n=1) were obtained from one of the authors and thoroughly cleaned.
The primary goal of this study was to characterize the influence of the pore-saturated gas media and their physical properties on the elasticity of porous ceramic materials. Resonant ultrasound spectroscopic measurements were performed on test specimens of alumina with ~40% porosity, zirconia with ~48% porosity, and sintered fully dense zirconia to determine the hydrostatic pressure-dependent macroscopic elasticity. Here, we report the variation of elasticity of porous and full dense samples over approximately five orders of magnitude (800-0.
View Article and Find Full Text PDFHost body response to a foreign medical device plays a critical role in defining its fate post implantation. It is thus important to control host-material interactions by designing innovative implant surfaces. In the recent years, biochemical and topographical features have been explored as main target to produce this new type of bioinert or bioresponsive implants.
View Article and Find Full Text PDF