It is common practice in the development of bioprocesses to genetically modify a microorganism and study a large number of resulting mutants in order to select the ones that perform best for use at the industrial scale. At industrial scale, strict nutrient-controlled growth conditions are imposed to control the metabolic activity and growth rate of the microorganism, thereby enhancing the expression of the product of interest. Although it is known that microorganisms that perform best under these strictly controlled conditions are not the same as the ones that perform best under uncontrolled batch conditions, screening, and selection is predominantly performed under batch conditions.
View Article and Find Full Text PDFWe developed a microfluidic droplet on-demand (DoD) generator that enables the production of droplets with a volume solely governed by the geometry of the generator for a range of operating conditions. The prime reason to develop this novel type of DoD generator is that its robustness in operation enables scale out and operation under non-steady conditions, which are both essential features for the further advancement of droplet-based assays. We first detail the working principle of the DoD generator and study the sensitivity of the volume of the generated droplets with respect to the used fluids and control parameters.
View Article and Find Full Text PDF