Publications by authors named "Kartik M Varadarajan"

Background: Hip dysplasia is a condition where the acetabulum is too shallow to support the femoral head and is commonly considered a risk factor for hip osteoarthritis. The objective of this study was to develop a deep learning model to diagnose hip dysplasia from plain radiographs and classify dysplastic hips based on their severity.

Methods: We collected pelvic radiographs of 571 patients from two single-center cohorts and one multicenter cohort.

View Article and Find Full Text PDF

Purpose: Delayed diagnosis of syndesmosis instability can lead to significant morbidity and accelerated arthritic change in the ankle joint. Weight-bearing computed tomography (WBCT) has shown promising potential for early and reliable detection of isolated syndesmotic instability using 3D volumetric measurements. While these measurements have been reported to be highly accurate, they are also experience-dependent, time-consuming, and need a particular 3D measurement software tool that leads the clinicians to still show more interest in the conventional diagnostic methods for syndesmotic instability.

View Article and Find Full Text PDF

Hip fracture accounts for a large number of hospitalizations, thereby causing substantial economic burden. Majority (> 90%) of all hip fractures are associated to sideways fall. Studies on sideways fall usually involve loading at quasi-static or at constant displacement rate, which neglects the physics of actual fall.

View Article and Find Full Text PDF

Intrusion of cement into bone is often considered an indirect indicator for implant stability in cemented joint replacement procedures. However, the influence of cement type (different viscosities/manufacturers) and application time-point on penetration of cements continues to be debated. This study aimed to quantify the effect of cement type and application time-point on the depth of penetration using porcine tibial specimens.

View Article and Find Full Text PDF

We present carbon nanotube (CNT)-reinforced polypropylene random copolymer (PPR) nanocomposites for the additive manufacturing of self-sensing piezoresistive materials via fused filament fabrication. The PPR/CNT feedstock filaments were synthesized through high shear-induced melt blending with controlled CNT loading up to 8 wt % to enable three-dimensional (3D) printing of nanoengineered PPR/CNT composites. The CNTs were found to enhance crystallinity (up to 6%) in PPR-printed parts, contributing to the overall CNT-reinforcement effect that increases both stiffness and strength (increases of 56% in modulus and 40% in strength at 8 wt % CNT loading).

View Article and Find Full Text PDF

Purpose: The purposes of this systematic review were to (1) identify the commonly used definitions of radiographic KOA progression, (2) summarize the important associative risk factors for disease progression based on findings from the OAI study and (3) summarize findings from radiographic KOA progression prediction modeling studies regarding the characterization of progression and outcomes.

Methods: A systematic review was performed by conducting a literature search of definitions, risk factors and predictive models for radiographic KOA progression that utilized data from the OAI database. Radiographic progression was further characterized into "accelerated KOA" and "typical progression," as defined by included studies.

View Article and Find Full Text PDF

Background: Postoperative complications continue to constitute a major issue for both the healthcare system and the individual patient and are associated with inferior outcomes and higher healthcare costs. The objective of this study was to evaluate the trends of postoperative complication rates over a 7-year period.

Methods: The NSQIP datasets from 2012 to 2018 were used to assess 30-day complication incidence rates including mortality rate following surgical procedures within ten surgical subspecialties.

View Article and Find Full Text PDF

Background: Early detection of postoperative complications, including organ failure, is pivotal in the initiation of targeted treatment strategies aimed at attenuating organ damage. In an era of increasing health-care costs and limited financial resources, identifying surgical patients at a high risk of postoperative complications and providing personalised precision medicine-based treatment strategies provides an obvious pathway for reducing patient morbidity and mortality. We aimed to leverage deep learning to create, through training on structured electronic health-care data, a multilabel deep neural network to predict surgical postoperative complications that would outperform available models in surgical risk prediction.

View Article and Find Full Text PDF

Unicompartmental knee arthroplasty has been shown to provide superior functional outcomes compared to total knee arthroplasty and have motivated development of advanced implant designs including bicruciate retaining knee arthroplasty. However, few validated frameworks are available to directly compare the effect of implant design and surgical techniques on ligament function and joint kinematics. In the present study, the subject-specific lower extremity models were developed based on musculoskeletal modeling framework using force-dependent kinematics method, and validated against in vivo telemetric data.

View Article and Find Full Text PDF

Purpose: A crucial step in the preoperative planning for a revision total hip replacement (THR) surgery is the accurate identification of the failed implant design, especially if one or more well-fixed/functioning components are to be retained. Manual identification of the implant design from preoperative radiographic images can be time-consuming and inaccurate, which can ultimately lead to increased operating room time, more complex surgery, and increased healthcare costs.

Method: In this study, we present a novel approach to identifying THR femoral implants' design from plain radiographs using a convolutional neural network (CNN).

View Article and Find Full Text PDF

Background: Accurate and timely detection of medical adverse events (AEs) from free-text medical narratives can be challenging. Natural language processing (NLP) with deep learning has already shown great potential for analyzing free-text data, but its application for medical AE detection has been limited.

Method: In this study, we developed deep learning based NLP (DL-NLP) models for efficient and accurate hip dislocation AE detection following primary total hip replacement from standard (radiology notes) and non-standard (follow-up telephone notes) free-text medical narratives.

View Article and Find Full Text PDF

Bi-cruciate retaining total knee arthroplasty has several potential advantages including improved anteroposterior knee stability compared to contemporary posterior cruciate-retaining total knee arthroplasty. However, few studies have explored whether there is significant differences of knee biomechanics following bi-cruciate retaining total knee arthroplasty compared to posterior cruciate-retaining total knee arthroplasty. In the present study, subject-specific lower extremity musculoskeletal multi-body dynamics models for bi-cruciate retaining, bi-cruciate retaining without anterior cruciate ligament, and posterior cruciate-retaining total knee arthroplasty were developed based on the musculoskeletal modeling framework using force-dependent kinematics method and validated against in vivo telemetric data.

View Article and Find Full Text PDF

Identifying the design of a failed implant is a key step in the preoperative planning of revision total joint arthroplasty. Manual identification of the implant design from radiographic images is time-consuming and prone to error. Failure to identify the implant design preoperatively can lead to increased operating room time, more complex surgery, increased blood loss, increased bone loss, increased recovery time, and overall increased healthcare costs.

View Article and Find Full Text PDF

Corrosion in revision total hip arthroplasty can be mitigated using a ceramic head on a well-fixed in situ stem, but concerns of their early failure because of any surface defects on in situ stem necessitates the use of a titanium sleeve, which furnishes a factory-finish surface. These sleeves are manufactured in different sizes allowing neck-length adjustment. The strength of the taper junction of non-sleeved primary heads is well-investigated, but the influence of an interposed titanium sleeve on achieving a secure taper lock is unclear.

View Article and Find Full Text PDF

Biomaterials associated infection (BAI) has been identified as one of the leading causes of failure of bioimplants. A failed implant requires revision surgery, which is about 20 times costlier and more painful than primary surgery. Infection starts from initial attachment of bacteria onto the surface of biomaterials followed by colonization and biofilm formation.

View Article and Find Full Text PDF

The constrained liner is an important tool for the treatment of recurrent dislocation, which continues to represent an important challenge in total hip arthroplasty. In constrained liner design, there is a tradeoff between dislocation resistance and range of motion. However, studies investigating their sensitivity to design parameters are scant.

View Article and Find Full Text PDF

Background: Joint dislocation is a major cause of failure in total hip arthroplasty. Dual-mobility implants provide a femoral head diameter that can match the native hip size for greater stability against dislocation. However, such large heads are prone to impingement against surrounding soft tissues.

View Article and Find Full Text PDF

Purpose: One of the key factors responsible for altered kinematics and joint stability following contemporary total knee arthroplasty (TKA) is resection of the anterior cruciate ligament (ACL). However, ACL retention can present several technical challenges, and in some cases may not be viable due to an absent or nonfunctional ACL. Therefore, the goal of this research was to investigate whether substitution of the ACL through an anterior post mechanism could improve kinematic deficits of contemporary posterior cruciate ligament (PCL) retaining implants.

View Article and Find Full Text PDF

Background: The objective of this study was to assess the retentive rim of retrieved dual mobility liners for visible evidence of deformation from femoral neck contact and to use cadaver models to determine if anterior soft tissue impingement could contribute to such deformation.

Methods: Fifteen surgically retrieved polyethylene liners were assessed for evidence of rim deformation. The average time in vivo was 31.

View Article and Find Full Text PDF

Soft-tissue impingement with dual mobility liners can cause anterior hip pain and intra-prosthetic dislocation. The hypothesis of this study was that reducing liner profile below the equator (contoured design) can mitigate soft-tissue impingement without compromising inner-head pull-out resistance and hip joint stability. The interaction of conventional and contoured liners with anterior soft tissues was evaluated in cadaver specimens via visual observation and fluoroscopic imaging.

View Article and Find Full Text PDF

Lack of ACL and non-anatomic articular surfaces in contemporary total knee implants result in kinematic abnormalities. We hypothesized that such abnormalities may be addressed with a biomimetic bi-cruciate retaining (BCR) design having anatomical articular surfaces. We used dynamic computer simulations to compare kinematics among the biomimetic BCR, a contemporary BCR and cruciate-retaining implant for activities of daily living.

View Article and Find Full Text PDF

While contemporary total knee arthroplasty (TKA) provides tremendous clinical benefits, the normal feel and function of the knee is not fully restored. To address this, a novel design process was developed to reverse engineer "biomimetic" articular surfaces that are compatible with normal soft-tissue envelope and kinematics of the knee. The biomimetic articular surface is created by moving the TKA femoral component along in vivo kinematics of normal knees and carving out the tibial articular surface from a rectangular tibial block.

View Article and Find Full Text PDF

Alterations in normal knee kinematics following total knee arthroplasty (TKA) arise in part from the non-anatomic articular geometry of contemporary implants. In this study, the kinematics of a novel posterior cruciate-retaining (CR) implant with anatomic (biomimetic) articular surface, were compared to that of contemporary CR implants during various simulated activities. Across different simulated activities the biomimetic-CR mimicked normal kinematic patterns more closely than contemporary CR implants.

View Article and Find Full Text PDF

Purpose: The object of this study was to investigate the in vivo function of the posterior cruciate ligament (PCL) in patients before and after a PCL-retaining total knee arthroplasty (TKA).

Methods: Eleven patients with advanced osteoarthritis (OA) of the knee were recruited. Magnetic resonance scans of each OA knee were obtained, and 3D computer models, including the femoral and tibial insertion areas of the anterolateral and posteromedial bundles of the PCL, were created.

View Article and Find Full Text PDF

Purpose: This systematic literature review analysed the change in range of knee flexion from pre-operative values, following conventional posterior stabilised (PS) and high-flexion (H-F) PS total knee arthroplasty (TKA).

Methods: We calculated the weighted mean differences of pre- and postoperative flexion using meta-analysis with random effect modelling. Eighteen studies met our inclusion criteria.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session3gbru05pghpif6g09v90b2al22funvlf): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once