Bread wheat ( is one of the world's most widely consumed cereals. Since micronutrient deficiencies are becoming more common among people who primarily depend upon cereal-based diets, a need for better-quality wheat varieties has been felt. An association panel of 154 lines was evaluated for the following quality traits: grain appearance (GA) score, grain hardness (GH), phenol reaction (PR) score, protein percent, sodium dodecyl sulfate (SDS) sedimentation value, and test weight (TWt).
View Article and Find Full Text PDFSome of the key genes and regulatory mechanisms controlling drought response in durum wheat have been identified. One of the major challenges for breeders is how to use this knowledge for the achievement of drought stress tolerance. In the present study, we report the expression profiles of the gene, at consecutive plant growth stages, from different durum wheat genotypes evaluated in two different field environments.
View Article and Find Full Text PDFThe development of nutritionally enhanced wheat ( L.) with higher levels of grain iron (Fe) and zinc (Zn) offers a sustainable solution to micronutrient deficiency among resource-poor wheat consumers. One hundred and ninety recombinant inbred lines (RILs) from 'Kachu' × 'Zinc-Shakti' cross were phenotyped for grain Fe and Zn concentrations and phenological and agronomically important traits at Ciudad Obregon, Mexico in the 2017-2018, 2018-2019, and 2019-2020 growing seasons and Diversity Arrays Technology (DArT) molecular marker data were used to determine genomic regions controlling grain micronutrients and agronomic traits.
View Article and Find Full Text PDFA and B genome copies of DRF1 gene in durum wheat were isolated and sequenced using gene variability. B genome specific polymorphism resulted, in a RIL population, in relationship with grain yield mainly in drought condition. Drought tolerance is one of the main components of yield potential and stability, and its improvement is a major challenge to breeders.
View Article and Find Full Text PDFPhenylalanine Ammonia Lyase (PAL) gene which plays a key role in bio-synthesis of medicinally important compounds, Rutin/quercetin was sequence characterized for its efficient genomics application. These compounds possessing anti-diabetic and anti-cancer properties and are predominantly produced by Fagopyrum spp. In the present study, PAL gene was sequenced from three Fagopyrum spp.
View Article and Find Full Text PDF