Alzheimer's disease (AD) affects millions of people and has limited treatment options, thus making it a global health concern. Amyloid β (Aβ), a disrupted cholinergic system with high acetylcholinesterase (AChE), oxidative stress (OS), reduced antioxidants, and neuroinflammation are key factors influencing AD progression. Prior research has shown that AChE can interact with Aβ and increase its accumulation and neurotoxicity, so targeting AChEs and Aβ could be a potential therapeutic approach for AD treatment.
View Article and Find Full Text PDFObjective: Breast cancer is a global health concern, with millions of cases reported annually worldwide, making it the most common cancer among women. In India, the incidence of breast cancer has been steadily rising, reflecting a growing public health challenge and hence in the development of new drug moieties. Toxicity analysis of such novel drug candidates play a critical role in drug development, ensuring the safety and efficacy of potential therapeutics.
View Article and Find Full Text PDFMultiwalled carbon nanotubes (MWCNTs) are at the forefront of nanotechnology-based advancements in cancer therapy, particularly in the field of targeted drug delivery. The nanotubes are characterized by their concentric graphene layers, which give them outstanding structural strength. They can deliver substantial doses of therapeutic agents, potentially reducing treatment frequency and improving patient compliance.
View Article and Find Full Text PDFContext: Multiwalled carbon nanotubes (MWCNTs) functionalized with lysine via 1,3-dipolar cycloaddition and conjugated to galactose or mannose are potential nanocarriers that can effectively bind to the lectin receptor in MDA-MB-231 or MCF-7 breast cancer cells. In this work, a method based on molecular dynamics (MD) simulation was used to predict the interaction of these functionalized MWCNTs with doxorubicin and obtain structural evidence that allows a better understanding of the drug loading and release process. The MD simulations showed that while doxorubicin only interacted with pristine MWCNTs through π-π stacking interactions, functionalized MWCNTs were also able to establish hydrogen bonds, suggesting that the functionalized groups improve doxorubicin loading.
View Article and Find Full Text PDFMulti-walled Carbon Nanotubes (MWCNTs) are inert structures with high aspect ratios that are widely used as vehicles for targeted drug delivery in cancer and many other diseases. They are largely non-toxic in nature however, when cells are exposed to these nanotubes for prolonged durations or at high concentrations, they show certain adverse effects. These include cytotoxicity, inflammation, generation of oxidative stress, and genotoxicity among others.
View Article and Find Full Text PDFProtein tyrosine phosphatase 1B (PTP1B) has gained interest as a therapeutic target for type 2 diabetes and obesity. Besides metabolic signalling, PTP1B is a positive regulator of signalling pathways linked to ErbB2-induced breast tumorigenesis. Substantial evidence proves that its overexpression is involved in breast cancer, which suggests that selective PTP1B inhibition might be effective in breast cancer treatment.
View Article and Find Full Text PDFPancreatic cancer is a devastating disease with a low survival rate and limited treatment options. Graphene quantum dots (GQDs) have recently become popular as a promising platform for cancer diagnosis and treatment due to their exceptional physicochemical properties, such as biocompatibility, stability, and fluorescence. This review discusses the potential of multifunctional GQDs as a platform for receptor targeting, drug delivery, and bioimaging in pancreatic cancer.
View Article and Find Full Text PDFMultiple malignancies exhibit aberrant FASN expression, associated with enhanced de novo lipogenesis to meet the metabolic demands of rapidly proliferating tumour cells. Furthermore, elevated FASN expression has been linked to tumour aggressiveness and poor prognosis in a variety of malignant tumours, making FASN is an attractive target for anticancer drug discovery. Herein, we report the de novo design and synthesis of (2-(2-hydroxyphenyl)-1H-benzo[d]imidazol-5-yl)(piperazin-1-yl)methanone derivatives as novel FASN inhibitors with potential therapeutic applications in breast and colorectal cancers.
View Article and Find Full Text PDFMicrowave-assisted synthetic methods have emerged as a popular technique for surface modification and the functionalization of multi-walled carbon nanotubes (MWCNTs) for diverse drug delivery applications. Microwave-induced functionalization of MWCNTs provides a high functionalization and requires less time than conventional techniques. Microwave methods are simple, fast, and effective for the covalent and noncovalent conjugation of MWCNTs with various biomolecules and polymers.
View Article and Find Full Text PDFRecent Pat Anticancer Drug Discov
January 2023
Introduction: Fatty acid synthase (FASN), is a key metabolic enzyme involved in fatty acid biosynthesis and is an essential target for multiple disease progressions like cancer, obesity, NAFLD, etc. Aberrant expression of FASN is associated with deregulated energy metabolism of cells in these diseases.
Area Covered: This article provides a summary of the most recent developments in the discovery of novel FASN inhibitors with potential therapeutic uses in cancer, obesity, and other metabolic disorders such as nonalcoholic fatty liver disease from 2016 to the present.
In men, prostate cancer (PC) is the most frequently diagnosed cancer, causing an estimated 375,000 deaths globally. Currently, existing therapies for the treatment of PC, notably metastatic cases, have limited efficacy due to drug resistance and problematic adverse effects. Therefore, it is imperative to discover and develop novel drugs for treating PC that are efficacious and do not produce intolerable adverse or toxic effects.
View Article and Find Full Text PDFMultiwalled carbon nanotubes (MWCNTs) are elongated, hollow cylindrical nanotubes made of sp2 carbon. MWCNTs have attracted significant attention in the area of drug delivery due to their high drug-loading capacity and large surface area. Furthermore, they can be linked to bioactive ligands molecules via covalent and noncovalent bonds that allow for the targeted delivery of anticancer drugs such as doxorubicin.
View Article and Find Full Text PDFFatty acid synthase (FASN) is one of the enzymes required for fatty acid biosynthesis and is expressed as low or absent in most normal cells/tissues. However, this enzyme is upregulated in various cancer cells; hence, it can act as an important target to design and develop novel FASN inhibitors for cancer therapy. In the present investigation, a series of structurally diverse compounds that possessed FASN inhibitory activities were subjected to classification analysis using different algorithms such as support vector machine, decision tree, Naïve Bayes and random forest.
View Article and Find Full Text PDFMany agents targeting the colchicine binding site in tubulin have been developed as potential anticancer agents. However, none has successfully made it to the clinic, due mainly to dose limiting toxicities and the emergence of multi-drug resistance. Chalcones targeting tubulin have been proposed as a safe and effective alternative.
View Article and Find Full Text PDFA novel series of 4-anilinoquinazoline analogues, , were evaluated for anticancer efficacy in human breast cancer (BT-20) and human colorectal cancer (CRC) cell lines (HCT116, HT29, and SW620). The compound, , had the highest anticancer efficacy and selectivity in the colorectal cancer cell lines, HCT116, HT29, and SW620, with IC values of 8.50 ± 2.
View Article and Find Full Text PDFIn this study, we designed, synthesized and evaluated, in vitro, novel chalcone analogs containing dialkylamino pharmacophores in the cervical cancer cell line, OV2008. The compound, was selective and significantly decreased the proliferation of OV2008 and HeLa cells in sub-micromolar concentrations, compared to prostate, lung, colon, breast or human embryonic kidney cell line (HEK293). , at 5 μM, arrested the OV2008 cells in the G2 phase.
View Article and Find Full Text PDFThe emergence and rapid spread of novel coronavirus disease (COVID-19) has posed a serious challenge to global public health in 2020. The speed of this viral spread together with the high mortality rate has caused an unprecedented public health crisis. With no antivirals or vaccines available for the treatment of COVID-19, the medical community is presently exploring repositioning of clinically approved drugs for COVID-19.
View Article and Find Full Text PDFFatty acid synthase (FASN) is a multifunctional enzyme involved in the production of fatty acids for lipid biosynthesis. FASN is overexpressed in multiple diseases like cancer, viral, nonalcoholic fatty liver disease, and metabolic disorders, making it an attractive target for new drug discovery for these diseases. In cancer, FASN affects the structure and function of the cellular membrane by channelizing with signaling pathways along with the post-translational palmitoylation of proteins.
View Article and Find Full Text PDFYin Yang 1 (YY1) is a ubiquitous transcription factor with both transcriptional activating and repressing functions. Targeting YY1 is considered as a potential therapeutic strategy for several malignancies. Telomerase Reverse Transcriptase (TERT) is also considered as a potential target for cancer therapeutics.
View Article and Find Full Text PDFA series of ten N-(3-(1H-tetrazole-5-yl)phenyl)acetamide derivatives (NM-07 to NM-16) designed from a lead molecule identified previously in our laboratory were synthesized and evaluated for protein tyrosine phosphatase 1B (PTP1B) inhibitory activity. Among the synthesized molecules, NM-14, a 5-Cl substituted benzothiazole analogue elicited significant PTP1B inhibition with an IC of 1.88 µM against reference standard suramin (IC ≥ 10 µM).
View Article and Find Full Text PDFA novel series of 3-((2-chloroquinolin-3-yl)methylene)indolin-2-ones were synthesized, using the 'molecular hybridization approach' and evaluated for anticancer efficacy. Eleven 3-((2-chloroquinolin-3-yl)methylene)indolin-2-ones ( to ) were synthesized and evaluated for cytotoxic efficacy in cancer (ovarian, prostate and colon) and two non-cancerous cell lines. Among the 3-((2-chloroquinolin-3-yl)methylene)indolin-2-one derivatives, with a 6-Cl substitution in the 3-quinolinyl moiety, had selective and potent cytotoxic efficacy in the ovarian cancer cell line A2780.
View Article and Find Full Text PDFThienopyrimidines containing a thiophene ring fused to pyrimidine are reported to have a wide-spectrum of anticancer efficacy in vitro. Here, we report for the first time that thieno[3,2-]pyrimidine-based compounds, also known as the RP series, have efficacy in prostate cancer cells. The compound RP-010 was efficacious against both PC-3 and DU145 prostate cancer (PC) cells (IC < 1 µM).
View Article and Find Full Text PDFMultidrug resistance (MDR) is a continuing clinical problem that limits the efficacy of chemotherapy in cancer. The over expression of the ATP-binding cassette (ABC) family G2 (ABCG2) transporter is one of the main mechanisms that mediates MDR in cancer. Molecular modeling data indicated that cariprazine, a dopamine D₂/D₃ receptor partial agonist, had a significant binding affinity for ABCG2 transporter with a Glide XP score of -6.
View Article and Find Full Text PDFDescribed herein is the synthesis and biological evaluation of a series of non-carboxylic inhibitors of Protein Tyrosine Phosphatase 1B designed using bioisosteric replacement strategy. Six N-(3-(1H-tetrazol-5-yl)phenyl)acetamide derivatives designed employing the aforementioned strategy were synthesized and screened for PTP1B inhibitory activity. Among the synthesized compounds, compound NM-03 exhibited the most potent inhibitory activity with IC value of 4.
View Article and Find Full Text PDFThe inhibition of apoptosis, disruption of cellular microtubule dynamics, and over-activation of the epithelial mesenchymal transition (EMT), are involved in the progression, metastasis, and resistance of colorectal cancer (CRC) to chemotherapy. Therefore, the design of a molecule that can target these pathways could be an effective strategy to reverse CRC progression and metastasis. In this study, twelve novel silybin derivatives, HM015a-HM015k (15a-15k) and compound 17, were screened for cytotoxicity in CRC cell lines.
View Article and Find Full Text PDF