Publications by authors named "Karthika M S"

Gene expression in the microarray is assimilated with redundant and high-dimensional information. Moreover, the information in the microarray genes mostly correlates with background noise. This paper uses dimensionality reduction and feature selection methods to employ a classification methodology for high-dimensional lung cancer microarray data.

View Article and Find Full Text PDF

The microarray gene expression data poses a tremendous challenge due to their curse of dimensionality problem. The sheer volume of features far surpasses available samples, leading to overfitting and reduced classification accuracy. Thus the dimensionality of microarray gene expression data must be reduced with efficient feature extraction methods to reduce the volume of data and extract meaningful information to enhance the classification accuracy and interpretability.

View Article and Find Full Text PDF

Microarray gene expression analysis is a powerful technique used in cancer classification and research to identify and understand gene expression patterns that can differentiate between different cancer types, subtypes, and stages. However, microarray databases are highly redundant, inherently nonlinear, and noisy. Therefore, extracting meaningful information from such a huge database is a challenging one.

View Article and Find Full Text PDF

Microarray gene expression-based detection and classification of medical conditions have been prominent in research studies over the past few decades. However, extracting relevant data from the high-volume microarray gene expression with inherent nonlinearity and inseparable noise components raises significant challenges during data classification and disease detection. The dataset used for the research is the Lung Harvard 2 Dataset (LH2) which consists of 150 Adenocarcinoma subjects and 31 Mesothelioma subjects.

View Article and Find Full Text PDF