The continual emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has necessitated the development of broad cross-reactive vaccines. Recent findings suggest that enhanced antigen presentation could lead to cross-reactive humoral responses against the emerging variants. Toward enhancing the antigen presentation to dendritic cells (DCs), we developed a novel shikimoylated mannose receptor targeting lipid nanoparticle (SMART-LNP) system that could effectively deliver mRNAs into DCs.
View Article and Find Full Text PDFAdvancements in gene delivery and editing have expanded the applications of autologous hematopoietic stem and progenitor cells (HSPCs) for the treatment of monogenic and acquired diseases. The gene editing toolbox is growing, and the ability to achieve gene editing with mRNA or protein delivered intracellularly by vehicles, such as electroporation and nanoparticles, has highlighted the potential of gene editing in HSPCs. Ongoing phase I/II clinical trials with gene-edited HSPCs for β-hemoglobinopathies provide hope for treating monogenic diseases.
View Article and Find Full Text PDFReactivation of fetal hemoglobin (HbF) is a commonly adapted strategy to ameliorate β-hemoglobinopathies. However, the continued production of defective adult hemoglobin (HbA) limits HbF tetramer production affecting the therapeutic benefits. Here, we evaluated deletional hereditary persistence of fetal hemoglobin (HPFH) mutations and identified an 11-kb sequence, encompassing putative repressor region (PRR) to β-globin exon-1 (βE1), as the core deletion that ablates HbA and exhibits superior HbF production compared with HPFH or other well-established targets.
View Article and Find Full Text PDFCRISPR/Cas9 is a highly versatile and efficient gene-editing tool adopted widely to correct various genetic mutations. The feasibility of gene manipulation of hematopoietic stem and progenitor cells (HSPCs) in vitro makes HSPCs an ideal target cell for gene therapy. However, HSPCs moderately lose their engraftment and multilineage repopulation potential in ex vivo culture.
View Article and Find Full Text PDFTransplantation of allogenic hematopoietic stem and progenitor cells (HSPCs) with C-C chemokine receptor type 5 (CCR5) Δ32 genotype generates HIV-1 resistant immune cells. CCR5 gene edited autologous HSPCs can be a potential alternative to hematopoietic stem cell transplantation (HSCT) from HLA-matched CCR5 null donor. However, the clinical application of gene edited autologous HSPCs is critically limited by the quality of the graft, as HIV also infects the HSPCs.
View Article and Find Full Text PDFCD34CD133CD90 hematopoietic stem cells (HSCs) are responsible for long-term multilineage hematopoiesis, and the high frequency of gene-modified HSCs is crucial for the success of hematopoietic stem and progenitor cell (HSPC) gene therapy. However, the culture and gene manipulation steps of HSPC graft preparation significantly reduce the frequency of HSCs, thus necessitating large doses of HSPCs and reagents for the manipulation. In this study, we identified a combination of small molecules, Resveratrol, UM729, and SR1 that preferentially expands CD34CD133CD90 HSCs over other subpopulations of adult HSPCs in culture.
View Article and Find Full Text PDFHIV infection continues to be a serious health issue with an alarming global spread, owing to the fact that attempts at developing an effective vaccine or a permanent cure remains futile. So far, the only available treatment for the clinical management of HIV is the combined Anti-Retroviral Therapy (cART), but the long-term cART is associated with metabolic changes, organ damages, and development and transmission of drug resistant HIV strains. Thus, there is a need for the development of one-time curative treatment for HIV infection.
View Article and Find Full Text PDF