In a metal-catalyzed oxidative addition, an oriented external electric field (EEF) catalyzes the reaction along one direction and inhibits it when applied in the opposite direction. Beyond a threshold value, the inhibitory direction becomes catalyzing by swapping the metal-to-ligand charge transfer (MLCT) to ligand-to-metal charge-transfer (LMCT) or . The change in direction of the charge-transfer mechanism triggers the inversion of the dipole moment along the reaction axis, that results in the resurgence of catalysis.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2023
Oriented external electric fields (EEFs) act as catalysts that can induce selectivity in chemical reactions. The responses of the Diels-Alder (DA) reaction between butadiene and ethylene (BDE-DA) as well as cyclopentadiene and ethylene (CPDE-DA) towards EEF stimuli are investigated here using density functional theory (B3LYP) calculations. EEF is a vector that catalyzes the reaction in one direction while inhibiting it in the opposite direction.
View Article and Find Full Text PDF