Publications by authors named "Karthik A Hemanthakumar"

Background: Preclinical studies have shown the therapeutic potential of VEGF-B (vascular endothelial growth factor B) in revascularization of the ischemic myocardium, but the associated cardiac hypertrophy and adverse side effects remain a concern. To understand the importance of endothelial proliferation and migration for the beneficial versus adverse effects of VEGF-B in the heart, we explored the cardiac effects of autocrine versus paracrine VEGF-B expression in transgenic and gene-transduced mice.

Methods: We used single-cell RNA sequencing to compare cardiac endothelial gene expression in VEGF-B transgenic mouse models.

View Article and Find Full Text PDF

Leukocytes and resident cells in the arterial wall contribute to atherosclerosis, especially at sites of disturbed blood flow. Expression of endothelial Tie1 receptor tyrosine kinase is enhanced at these sites, and attenuation of its expression reduces atherosclerotic burden and decreases inflammation. However, Tie2 tyrosine kinase function in atherosclerosis is unknown.

View Article and Find Full Text PDF

The growth factor Neuregulin-1 (NRG-1) regulates myocardial growth and is currently under clinical investigation as a treatment for heart failure. Here, we demonstrate in several in vitro and in vivo models that STAT5b mediates NRG-1/EBBB4-stimulated cardiomyocyte growth. Genetic and chemical disruption of the NRG-1/ERBB4 pathway reduces STAT5b activation and transcription of STAT5b target genes Igf1, Myc, and Cdkn1a in murine cardiomyocytes.

View Article and Find Full Text PDF

Humanized mouse models and mouse-adapted SARS-CoV-2 virus are increasingly used to study COVID-19 pathogenesis, so it is important to learn where the SARS-CoV-2 receptor ACE2 is expressed. Here we mapped ACE2 expression during mouse postnatal development and in adulthood. Pericytes in the CNS, heart, and pancreas express ACE2 strongly, as do perineurial and adrenal fibroblasts, whereas endothelial cells do not at any location analyzed.

View Article and Find Full Text PDF

Vascular endothelial growth factors (VEGFs) and their receptors (VEGFRs) are quintessential for the development and maintenance of blood and lymphatic vessels. However, genetic interactions between the VEGFRs are poorly understood. VEGFR2 is the dominant receptor that is required for the growth and survival of the endothelium, whereas deletion of VEGFR1 or VEGFR3 was reported to induce vasculature overgrowth.

View Article and Find Full Text PDF

Aging, obesity, hypertension, and physical inactivity are major risk factors for endothelial dysfunction and cardiovascular disease (CVD). We applied fluorescence-activated cell sorting (FACS), RNA sequencing, and bioinformatic methods to investigate the common effects of CVD risk factors in mouse cardiac endothelial cells (ECs). Aging, obesity, and pressure overload all upregulated pathways related to TGF-β signaling and mesenchymal gene expression, inflammation, vascular permeability, oxidative stress, collagen synthesis, and cellular senescence, whereas exercise training attenuated most of the same pathways.

View Article and Find Full Text PDF

Background: Recent discoveries have indicated that, in the developing heart, sinus venosus and endocardium provide major sources of endothelium for coronary vessel growth that supports the expanding myocardium. Here we set out to study the origin of the coronary vessels that develop in response to vascular endothelial growth factor B (VEGF-B) in the heart and the effect of VEGF-B on recovery from myocardial infarction.

Methods: We used mice and rats expressing a VEGF-B transgene, VEGF-B-gene-deleted mice and rats, apelin-CreERT, and natriuretic peptide receptor 3-CreERT recombinase-mediated genetic cell lineage tracing and viral vector-mediated VEGF-B gene transfer in adult mice.

View Article and Find Full Text PDF

Endothelial cells (ECs) line the inner surface of all blood and lymphatic vessels throughout the body, making endothelium one of the largest tissues. In addition to its transport function, endothelium is now appreciated as a dynamic organ actively participating in angiogenesis, permeability and vascular tone regulation, as well as in the development and regeneration of tissues. The identification of endothelial-derived secreted factors, angiocrines, has revealed non-angiogenic mechanisms of endothelial cells in both physiological and pathological tissue remodeling.

View Article and Find Full Text PDF

Introduction: We investigated the effects of a supervised progressive sprint interval training (SIT) and moderate-intensity continuous training (MICT) on adipocyte morphology and adipose tissue metabolism and function; we also tested whether the responses were similar regardless of baseline glucose tolerance and sex.

Research Design And Methods: 26 insulin-resistant (IR) and 28 healthy participants were randomized into 2-week-long SIT (4-6×30 s at maximum effort) and MICT (40-60 min at 60% of maximal aerobic capacity (VO)). Insulin-stimulated glucose uptake and fasting-free fatty acid uptake in visceral adipose tissue (VAT), abdominal and femoral subcutaneous adipose tissues (SATs) were quantified with positron emission tomography.

View Article and Find Full Text PDF

Objective: Lymphatics play an essential pathophysiological role in promoting fluid and immune cell tissue clearance. Conversely, immune cells may influence lymphatic function and remodeling. Recently, cardiac lymphangiogenesis has been proposed as a therapeutic target to prevent heart failure after myocardial infarction (MI).

View Article and Find Full Text PDF

Background: Heart failure, which is a major global health problem, is often preceded by pathological cardiac hypertrophy. The expansion of the cardiac vasculature, to maintain adequate supply of oxygen and nutrients, is a key determinant of whether the heart grows in a physiological compensated manner or a pathological decompensated manner. Bidirectional endothelial cell (EC)-cardiomyocyte (CMC) cross talk via cardiokine and angiocrine signaling plays an essential role in the regulation of cardiac growth and homeostasis.

View Article and Find Full Text PDF

Background: Toxicity of chemotherapy on skeletal muscles and the heart may significantly contribute to cancer cachexia, mortality, and decreased quality of life. Doxorubicin (DOX) is an effective cytostatic agent, which unfortunately has toxic effects on many healthy tissues. Blocking of activin receptor type IIB (ACVR2B) ligands is an often used strategy to prevent skeletal muscle loss, but its effects on the heart are relatively unknown.

View Article and Find Full Text PDF

The latest emergence of influenza A (H1N1) virus outbreak demonstrated how swiftly a new strain of flu can evolve and spread around the globe. The A/H1N1 flu has been spreading at unprecedented speed, and further spread within the countries being affected and to other adjacent or far way countries is considered inevitable due to the rapid emigration of infected individuals across the world. In this bioinformation, we discuss the mechanism of evolution of a new HxNy strain and the essential criteria for potentially breaking the outbreak of these extremely harmful and rapidly evolving viral strains in the near future by taking the recent H1N1 pandemic as a classical paradigm.

View Article and Find Full Text PDF