We present a novel technique to probe electroweak nuclear properties by measuring parity violation (PV) in single molecular ions in a Penning trap. The trap's strong magnetic field Zeeman shifts opposite-parity rotational and hyperfine molecular states into near degeneracy. The weak interaction-induced mixing between these degenerate states can be larger than in atoms by more than 12 orders of magnitude, thereby vastly amplifying PV effects.
View Article and Find Full Text PDFThe nuclear charge radius of ^{32}Si was determined using collinear laser spectroscopy. The experimental result was confronted with ab initio nuclear lattice effective field theory, valence-space in-medium similarity renormalization group, and mean field calculations, highlighting important achievements and challenges of modern many-body methods. The charge radius of ^{32}Si completes the radii of the mirror pair ^{32}Ar-^{32}Si, whose difference was correlated to the slope L of the symmetry energy in the nuclear equation of state.
View Article and Find Full Text PDFThe excitation energy of the 1/2^{-} isomer in ^{99}In at N=50 is measured to be 671(37) keV and the mass uncertainty of the 9/2^{+} ground state is significantly reduced using the ISOLTRAP mass spectrometer at ISOLDE/CERN. The measurements exploit a major improvement in the resolution of the multireflection time-of-flight mass spectrometer. The results reveal an intriguing constancy of the 1/2^{-} isomer excitation energies in neutron-deficient indium that persists down to the N=50 shell closure, even when all neutrons are removed from the valence shell.
View Article and Find Full Text PDFWe probe the N=82 nuclear shell closure by mass measurements of neutron-rich cadmium isotopes with the ISOLTRAP spectrometer at ISOLDE-CERN. The new mass of ^{132}Cd offers the first value of the N=82, two-neutron shell gap below Z=50 and confirms the phenomenon of mutually enhanced magicity at ^{132}Sn. Using the recently implemented phase-imaging ion-cyclotron-resonance method, the ordering of the low-lying isomers in ^{129}Cd and their energies are determined.
View Article and Find Full Text PDFA method is presented to monitor the internal energy distribution of cluster anions via delayed electron detachment by pulsed photoexcitation and demonstrated on Co_{4}^{-} in an electrostatic ion beam trap. In a cryogenic operation, we calibrate the detachment delay to internal energy. By laser frequency scans, at room temperature, we reconstruct the time-dependent internal energy distribution of the clusters.
View Article and Find Full Text PDFAn electrostatic cryogenic storage ring, CSR, for beams of anions and cations with up to 300 keV kinetic energy per unit charge has been designed, constructed, and put into operation. With a circumference of 35 m, the ion-beam vacuum chambers and all beam optics are in a cryostat and cooled by a closed-cycle liquid helium system. At temperatures as low as (5.
View Article and Find Full Text PDFWe have studied the photodissociation of CH^{+} in the Cryogenic Storage Ring at ambient temperatures below 10 K. Owing to the extremely high vacuum of the cryogenic environment, we were able to store CH^{+} beams with a kinetic energy of ∼60 keV for several minutes. Using a pulsed laser, we observed Feshbach-type near-threshold photodissociation resonances for the rotational levels J=0-2 of CH^{+}, exclusively.
View Article and Find Full Text PDFA total of 432 clinical isolates of Staphylococcus aureus (128), coagulase-negative staphylococci (123), group A and B beta-hemolytic streptococci (61), group D streptococci (30), Streptococcus penumoniae (29), Haemophilus influenzae (19), Haemophilus parainfluenzae (12), and Legionella pneumophila (30) were examined with the agar dilution and Bauer-Kirby agar disk diffusion tests for susceptibility to josamycin as compared with erythromycin. On a weight-for-weight basis, erythromycin was more active than josamycin against all bacterial species, including L. pneumophila.
View Article and Find Full Text PDFChemotherapy
November 1986
A total of 106 strains of Clostridium perfringens type A, that had been isolated very recently from faecal cultures of healthy adults, were examined for susceptibility to 23 antimicrobial drugs (agar dilution method). All strains were susceptible to ampicillin, cefazolin, cefotaxime, cefotetan, cefoxitin, ceftriaxone, ciprofloxacin, fusidic acid, imipenem, metronidazole, mezlocillin, ofloxacin, penicillin G, piperacillin, teicoplanin, and vancomycin. Teicoplanin and imipenem were the most active, whereas fosfomycin and tetracycline were the least active drugs.
View Article and Find Full Text PDF