Publications by authors named "Kartashynska E"

An approach for the assessment of the area per surfactant molecule in a monolayer at the onset of the LE-LC phase transition () is proposed based on the quantum chemical approach and a thermodynamic model for amphiphilic monolayers, which takes into account the nonideality of the mixing entropy. The values of the Gibbs' clusterization energy for small surfactant associates, as well as the geometric parameters of the monolayer unit cells, were used, previously calculated using the semiempirical PM3 method for eight classes of amphiphilic compounds: saturated and ethoxylated alcohols, saturated and unsaturated -carboxylic acids, α-hydroxylic and α-aminoacids, -acyl-substituted alanine and dialkyl-substituted melamine. The obtained values are in satisfactory agreement with the available experimental data.

View Article and Find Full Text PDF

To assess the surface basicity constant (p ) of aliphatic amine films, the use of a theoretical approach recently developed to evaluate the p of carboxylic acid monolayers on the water surface is tested. The present paper gives a new full picture of the change of acid-base properties of surfactants during their aggregation at the air/water interface. The exploited approach is simple because it does not involve the construction of thermodynamic cycles but uses the Gibbs energies of the formation and dimerization of surfactant monomers in neutral and ionized forms in the aqueous and gaseous phases.

View Article and Find Full Text PDF

The thermodynamic parameters of formation and clusterization of aliphatic alcohols C HOH and carboxylic acids C HCOOH ( = 6-16) are calculated using the quantum-chemical semiempirical PM3 method. Four types of dimers are constructed in two directions of the spread monolayer comprising the most energetically advantageous monomer structures. The hydrophobic chains of alcohol and carboxylic acid molecules in the regarded dimers are found to be tilted within 12° to the normal of the spread monolayer.

View Article and Find Full Text PDF

A theoretical basis is provided for the experimental fact that for various surfactant classes the alkyl chain length threshold varies for the formation of condensed monolayers. The existence of the alkyl chain length threshold for a surfactant enabling the formation of monolayers is determined by the entropy increment to the Gibbs' energy, assessed by using the quantum chemical semiempiric method PM3. The value of the clusterization threshold is not stipulated by the surfactant solubility in water, rather by the electron-donor and electron-seeking properties of the head groups.

View Article and Find Full Text PDF

Using the quantum chemical semi-empirical PM3 method it is shown that aliphatic alcohols favor the spontaneous clusterization of vaporous alkanes at the water surface due to the change of adsorption from the barrier to non-barrier mechanism. A theoretical model of the non-barrier mechanism for monolayer formation is developed. In the framework of this model alcohols (or any other surfactants) act as 'floats', which interact with alkane molecules of the vapor phase using their hydrophobic part, whereas the hydrophilic part is immersed into the water phase.

View Article and Find Full Text PDF

A new model based on the quantum chemical approach is proposed to describe structural and thermodynamic parameters of clusterization for substituted alkanes at the air/liquid and liquid/liquid interfaces. The new model by the authors, unlike the previous one, proposes an explicit account of the liquid phase (phases) influence on the parameters of monomers, clusters and monolayers of substituted alkanes at the regarded interface. The calculations were carried out in the frameworks of the quantum chemical semiempirical PM3 method (Mopac 2012), using the COSMO procedure.

View Article and Find Full Text PDF

In the framework of the quantum chemical semiempirical PM3 method the monolayers of the monoethoxylated normal alcohols CnH2n+1OCH2CH2OH with n = 6-16 (CnE1) at the air/water interface are described. The optimized structures of small clusters (dimers, trimers, tetramers, pentamers, hexamers and heptamers) comprising the hexagonal monolayer are obtained. For these aggregates thermodynamic parameters of formation and clusterization are calculated.

View Article and Find Full Text PDF