Publications by authors named "Karsten Specht"

Executive functions (EF) decline with age and this decline in older adults with generalised anxiety disorder (GAD) may be influenced by heart rate variability (HRV), brain-derived neurotrophic factor (BDNF), and physical fitness. Understanding these relationships is important for tailored treatments in this population. In this study, 51 adults with GAD ( age = 66.

View Article and Find Full Text PDF

Magnetic resonance spectroscopy (MRS) is the primary method that can measure the levels of metabolites in the brain in vivo. To achieve its potential in clinical usage, the reliability of the measurement requires further articulation. Although there are many studies that investigate the reliability of gamma-aminobutyric acid (GABA), comparatively few studies have investigated the reliability of other brain metabolites, such as glutamate (Glu), N-acetyl-aspartate (NAA), creatine (Cr), phosphocreatine (PCr), or myo-inositol (mI), which all play a significant role in brain development and functions.

View Article and Find Full Text PDF

The notion of a connection between autism and music is as old as the first reported cases of autism, and music has been used as a therapeutic tool for many decades. Music therapy holds promise as an intervention for individuals with autism, harnessing their strengths in music processing to enhance communication and expression. While previous randomized controlled trials have demonstrated positive outcomes in terms of global improvement and quality of life, their reliance on psychological outcomes restricts our understanding of underlying mechanisms.

View Article and Find Full Text PDF

Introduction: Brain age, the estimation of a person's age from magnetic resonance imaging (MRI) parameters, has been used as a general indicator of health. The marker requires however further validation for application in clinical contexts. Here, we show how brain age predictions perform for the same individual at various time points and validate our findings with age-matched healthy controls.

View Article and Find Full Text PDF

Longitudinal studies have become more common in the past years due to their superiority over cross-sectional samples. In light of the ongoing replication crisis, the factors that may introduce variability in resting-state networks have been widely debated. This publication aimed to address the potential sources of variability, namely, time of day, sex, and age, in longitudinal studies within individual resting-state fMRI data.

View Article and Find Full Text PDF

Resting-state fMRI is an increasingly popular alternative to task-based fMRI. However, a formal quantification of the amount of information provided by resting-state fMRI as opposed to active task conditions about neural responses is lacking. We conducted a systematic comparison of the quality of inferences derived from a resting-state and a task fMRI paradigm by means of Bayesian Data Comparison.

View Article and Find Full Text PDF

Laterality indices (LIs) quantify the left-right asymmetry of brain and behavioural variables and provide a measure that is statistically convenient and seemingly easy to interpret. Substantial variability in how structural and functional asymmetries are recorded, calculated, and reported, however, suggest little agreement on the conditions required for its valid assessment. The present study aimed for consensus on general aspects in this context of laterality research, and more specifically within a particular method or technique (i.

View Article and Find Full Text PDF

Our understanding of the cognitive functions of the human brain has tremendously benefited from the population functional Magnetic Resonance Imaging (fMRI) studies in the last three decades. The reliability and replicability of the fMRI results, however, have been recently questioned, which has been named the replication crisis. Sufficient statistical power is fundamental to alleviate the crisis, by either "going big," leveraging big datasets, or by "going small," densely scanning several participants.

View Article and Find Full Text PDF

Background: Transcranial direct current stimulation (tDCS) is used as treatment for auditory verbal hallucinations (AVH). The theory behind the treatment is that tDCS activity in prefrontal cognitive control areas, which are assumed to be active, and simultaneously activity in temporal speech perception areas, which are assumed to be active during AVH. We tested this hypofrontal/hypertemporal reversal theory by investigating anatomical, neurotransmitter, brain activity, and network connectivity changes over the course of tDCS treatment.

View Article and Find Full Text PDF

Replicability has become an increasing focus within the scientific communities with the ongoing "replication crisis." One area that appears to struggle with unreliable results is resting-state functional magnetic resonance imaging (rs-fMRI). Therefore, the current study aimed at improving the knowledge of endogenous factors that contribute to inter-individual variability.

View Article and Find Full Text PDF

The present study replicates a known visual language paradigm, and extends it to a paradigm that is independent from the sensory modality of the stimuli and, hence, could be administered either visually or aurally, such that both patients with limited sight or hearing could be examined. The stimuli were simple sentences, but required the subject not only to understand the content of the sentence but also to formulate a response that had a semantic relation to the content of the presented sentence. Thereby, this paradigm does not only test perception of the stimuli, but also to some extend sentence and semantic processing, and covert speech production within one task.

View Article and Find Full Text PDF

Introduction: Individuals experiencing auditory hallucinations (AH) tend to perceive voices when exposed to random noise. However, the factors driving this tendency remain unclear. The present study examined the interaction of a top-down (expectations) and bottom-up (type of noise) process to better understand the mechanisms that underlie AH.

View Article and Find Full Text PDF

Dichotic listening along with the right-ear advantage (REA) has been a standard method of investigating auditory laterality ever since it was first introduced into neuropsychology in the early 1960s. Beginning in the 1980s, authors reported that it was possible to modulate the bottom-up driven perceptual REA by instructing subjects to selectively attend to and report only from the right or left ear. In the present study, we investigated neuronal correlates of both the bottom-up and top-down modulation of the REA through two fMRI analysis approaches: a traditional region approach and a network connectivity approach.

View Article and Find Full Text PDF

In the light of the ongoing replication crisis in the field of neuroimaging, it is necessary to assess the possible exogenous and endogenous factors that may affect functional magnetic resonance imaging (fMRI). The current project investigated time-of-day effects in the spontaneous fluctuations (<0.1 Hz) of the blood oxygenation level dependent (BOLD) signal.

View Article and Find Full Text PDF

Background & Objective: We have previously identified aberrant connectivity of the left precuneus, ventrolateral prefrontal cortex, anterior cingulate cortex, and anterior insula in patients with either a paranoid (schizophrenia), or a depressive syndrome (both unipolar and bipolar). In the current study, we attempted to replicate and expand these findings by including a healthy control sample and separating the patients in a depressive episode into two groups: unipolar and bipolar depression. We hypothesized that the connections between those major nodes of the resting state networks would demonstrate different patterns in the three patient groups compared to the healthy subjects.

View Article and Find Full Text PDF

Auditory repetition suppression and omission activation are opposite neural phenomena and manifestations of principles of predictive processing. Repetition suppression describes the temporal decrease in neural activity when a stimulus is constant or repeated in an expected temporal fashion; omission activity is the transient increase in neural activity when a stimulus is temporarily and unexpectedly absent. The temporal, repetitive nature of musical rhythms is ideal for investigating these phenomena.

View Article and Find Full Text PDF

Motion-sound synesthesia is characterized by illusory auditory sensations linked to the pattern and rhythms of motion (dubbed "Mickey Mousing" as in cinema) of visually experienced but soundless object, like an optical flow array, a ball bouncing or a horse galloping. In an MRI study with a group of three synesthetes and a group of eighteen control participants, we found structural changes in the brains of synesthetes in the subcortical multisensory areas of the superior and inferior colliculi. In addition, functional magnetic resonance imaging data showed activity in motion-sensitive regions, as well as temporal and occipital areas, and the cerebellum.

View Article and Find Full Text PDF

Objective: Previous studies of the consequences of unilateral hearing loss (UHL) on the functional-structural organization of the brain has included subjects with various degrees of UHL. We suggest that the consequences of a total loss of hearing in one ear might differ from those seen in subjects with residual hearing in the affected ear. Thus, the main aim of the present study was to compare the structural properties of auditory and non-auditory brain regions in persons with complete UHL to those of normal hearing controls.

View Article and Find Full Text PDF

Understanding the association between autonomic nervous system [ANS] function and brain morphology across the lifespan provides important insights into neurovisceral mechanisms underlying health and disease. Resting-state ANS activity, indexed by measures of heart rate [HR] and its variability [HRV] has been associated with brain morphology, particularly cortical thickness [CT]. While findings have been mixed regarding the anatomical distribution and direction of the associations, these inconsistencies may be due to sex and age differences in HR/HRV and CT.

View Article and Find Full Text PDF

In a stable environment the brain can minimize processing required for sensory input by forming a predictive model of the surrounding world and suppressing neural response to predicted stimuli. Unpredicted stimuli lead to a prediction error signal propagation through the perceptual network, and resulting adjustment to the predictive model. The inter-regional plasticity which enables the model-building and model-adjustment is hypothesized to be mediated via glutamatergic receptors.

View Article and Find Full Text PDF

The underlying neural mechanisms of transcranial direct current stimulation (tDCS), especially beyond the primary motor cortex, remain unclear. Several studies examined tDCS effects on either functional activity, neurotransmitters or behavior but few investigated those aspects together to reveal how the brain responds to tDCS. The objective is to elucidate the underlying mechanisms of tDCS using a multimodal approach that extends from behavioral to neurotransmitter levels of explanation.

View Article and Find Full Text PDF

Translational neuroscience is an important field that brings together clinical praxis with neuroscience methods. In this review article, the focus will be on functional neuroimaging (fMRI) and its applicability in clinical fMRI studies. In the light of the "replication crisis," three aspects will be critically discussed: First, the fMRI signal itself, second, current fMRI praxis, and, third, the next generation of analysis strategies.

View Article and Find Full Text PDF

Using fMRI, Hugdahl et al. (2015) reported the existence of a general-domain cortical network during active task-processing which was non-specific to the cognitive task being processed. They labelled this network the extrinsic mode network (EMN).

View Article and Find Full Text PDF