Publications by authors named "Karsten Hinrichs"

Debondable pressure-sensitive adhesives (PSAs) promise access to recyclability in microelectronics in the transition toward a circular economy. Two PSAs were synthesized from a tetravalent thiol star-polyester forming thiol-catechol-connectivities (TCC) with either the biorelated DiDopa-bisquinone (BY*Q) or the fossil-based bisquinone A (BQA). The PSAs enable debonding by oxidation of TCC-catechols to quinones.

View Article and Find Full Text PDF

This work presents an electrochemical sensor detecting a fungicide-azoxystrobin (AZO) in aqueous environments. This AZO sensor utilizes a thin-film metal electrode (TFME) combined with an AZO-selective molecularly imprinted polymer (AZO-MIP). The AZO-MIP was directly generated on TFME through electrochemical polymerization from the solution containing two functional monomers: aniline (Ani) and m-phenylenediamine (mPD), and the template: AZO, which was afterwards removed to form AZO-selective cavities in the polymer matrix.

View Article and Find Full Text PDF

Solvated electrons are highly reductive chemical species whose chemical properties remain largely unknown. Diamond materials are proposed as a promising emitter of solvated electrons and visible light excitation would enable solar-driven CO or N reductions reactions in aqueous medium. But sub-bandgap excitation remains challenging.

View Article and Find Full Text PDF

We recently introduced a novel, to the best of our knowledge, infrared laser ellipsometer for sub-decisecond spectroscopy [Opt. Lett.44, 4387 (2019)10.

View Article and Find Full Text PDF

Dysregulation of extracellular signal-regulated kinases (ERK1/2) is linked to several diseases including heart failure, genetic syndromes and cancer. Inhibition of ERK1/2, however, can cause severe cardiac side-effects, precluding its wide therapeutic application. ERK-autophosphorylation was identified to cause pathological cardiac hypertrophy.

View Article and Find Full Text PDF

mid-infrared (MIR) spectroscopy in liquids is an emerging field for the analysis of functional surfaces and chemical reactions. Different basic geometries exist forMIR spectroscopy in milliliter (mL) and microfluidic flow cells, such as attenuated total reflection (ATR), simple reflection, transmission and fiber waveguides. After a general introduction of linear opticalMIR techniques, the methodology of ATR, ellipsometric and microfluidic applications in single-reflection geometries is presented.

View Article and Find Full Text PDF

We studied NE-4C neural cells differentiation on 2D polycaprolactone (PCL) nanofibrous scaffolds with systematically varied mechanical characteristics of nanofibers while retaining an unchanged fiber alignment, diameter, and chemical composition. Our experiments demonstrated that the nanofibers with enhanced mechanical properties are beneficial for the preferential development of neuronal cells vs. glial cells.

View Article and Find Full Text PDF

We recently presented a novel laser-based infrared (IR) spectroscopic phase-amplitude polarimeter for sub-decisecond and - measurements of organic thin films [Opt. Lett.44, 4387 (2019)OPLEDP0146-959210.

View Article and Find Full Text PDF

We report on the first, to the best of our knowledge, sub-second, - infrared (IR) spectroscopic measurements of thin organic films employing a laser-based phase-amplitude polarimeter in reflection geometry. The polarimeter uses a broadband mid-IR quantum cascade laser tunable between 1318   and 1765  , as well as a single-shot beam division scheme for simultaneous single-pulse phase and amplitude measurements. The instrument achieves 120 μm spatial and <0.

View Article and Find Full Text PDF

In the last few decades, the use of plasmonics in vibrational spectroscopy has expanded the scope of (bio)analytical investigations. Nevertheless, there is a demand for a combined platform that can be simultaneously efficient for Surface Enhanced Raman Scattering (SERS) and Surface Enhanced Infrared Absorption (SEIRA). Here, we present a solution on the basis of a plasmonic Ag nanoparticle layer with a thickness gradient.

View Article and Find Full Text PDF

A facile route to biofouling-resistant porous thin-film membranes that can be fine-tuned for specific needs in diverse bioseparation, mass flow control, sensors, and drug delivery applications is reported. The proposed approach is based on combining two distinct macromolecular systems-a cross-linked poly(2-vinyl pyridine) network and a 3D-grafted polyethylene oxide (PEO) layer-in one robust porous material whose porosity can be adjusted within a wide range, covering the macroporous and mesoporous size regimes. Notably, this reconfigurable material maintains its antifouling properties throughout the entire range of pore size configurations because of a dense surface carpet of PEO chains with self-healing properties that are immobilized both onto the surface and inside the polymer network through what was termed 3D grafting.

View Article and Find Full Text PDF

We present a high-optical-throughput infrared Mueller-matrix (MM) ellipsometer for the characterization of structured surfaces and ultrathin films. Its unprecedented sensitivity of about 10 in the normalized MM elements enables studies of the complex vibrational fingerprint of thin organic films under different ambient conditions. The ellipsometer acquires quadruples of MM elements within a few 10 s to min, rendering it interesting for process and in-line monitoring.

View Article and Find Full Text PDF

Infrared techniques enable nondestructive and label-free studies of thin films with high chemical and structural contrast. In this work, we review recent progress and perspectives in the nanoscale analysis of anisotropic materials using an extended version of the atomic force microscopy-infrared (AFM-IR) technique. This advanced photothermal technique, includes polarization control of the incoming light and bridges the gap in IR spectroscopic analysis of local anisotropic material properties.

View Article and Find Full Text PDF

Nondestructive label-free bioanalytics of microliter to nanoliter sample volumes with low analyte concentrations requires novel analytic approaches. For this purpose, we present an optofluidic platform that combines surface-enhanced in situ infrared spectroscopy with microfluidics for sensing of surface-immobilized ultrathin biomolecular films in liquid analytes. Submonolayer sensitivity down to surface densities of few ng/cm is demonstrated for the adsorption of the thiolate tripeptide glutathione and for the recognition of streptavidin on a biotinylated enhancement substrate.

View Article and Find Full Text PDF

We report a novel route for the functionalization of any substrates, including chemically inert substrates. CVD grown graphene is electrochemically functionalized with p-(N-maleimido)phenyl residues and consecutively transferred to various substrates. The transfer process is shown to be without noticeable loss.

View Article and Find Full Text PDF

We report on the experimental characterization of anisotropic supramolecular assemblies by infrared (IR) nanopolarimetry. The presented IR absorption anisotropy imaging method simultaneously provides nanoscale-resolved insights into internal composition, intermolecular interactions, and supramolecular orientation in a label-free and noninvasive fashion. Our study of porphyrin aggregates demonstrates that their morphology can be correlated with stable J-type and metastable H-type stacking-induced anisotropic organization, revealing different oriented attachment growth mechanisms supported by theory.

View Article and Find Full Text PDF

We significantly improve the infrared analysis of ultrathin films in aqueous environments by employing in situ infrared ellipsometry. Combining it with rigorous optical modeling avoids otherwise typical misinterpretations of spectral features and enables the simultaneous quantification of chemical composition, hydration states, structure, and molecular interactions. We apply this approach to study covalently end-grafted, nanometer-thin brushes of poly(N-isopropylacrylamide), a thermoresponsive model polymer for proteins at solid-liquid interfaces.

View Article and Find Full Text PDF

Temperature-responsive oxazoline-based polymer brushes have gained increased attention as biocompatible surfaces. In aqueous environment, they can be tuned between hydrophilic and hydrophobic behavior triggered by a temperature stimulus. This transition is connected with changes in molecule-solvent interactions and results in a switching of the brushes between swollen and collapsed states.

View Article and Find Full Text PDF

The synergistic effect of combining molecular imprinting and surface acoustic wave (SAW) technologies for the selective and label-free detection of sulfamethizole as a model antibiotic in aqueous environment was demonstrated. A molecularly imprinted polymer (MIP) for sulfamethizole (SMZ) selective recognition was prepared in the form of a homogeneous thin film on the sensing surfaces of SAW chip by oxidative electropolymerization of m-phenylenediamine (mPD) in the presence of SMZ, acting as a template. Special attention was paid to the rational selection of the functional monomer using computational and spectroscopic approaches.

View Article and Find Full Text PDF

2D mussel-inspired polydopamine (PDA) nanosheets are prepared and exploited as a functional surface for grafting various polymer brushes. The PDA nanosheet and its polymer-brush derivatives show lateral integrity and are robust; therefore, they can be detached from their substrates. Cell-adhesion tests show that the PDA nanosheet promotes cell growth and attachment, while a PDA-based poly(3-sulfopropyl methacrylate) carpet exhibits nonfouling behavior.

View Article and Find Full Text PDF

The protein-adsorbing and -repelling properties of various smart nanometer-thin polymer brushes containing poly(N-isopropylacrylamide) and poly(acrylic acid) with high potential for biosensing and biomedical applications are studied by in situ infrared-spectroscopic ellipsometry (IRSE). IRSE is a highly sensitive nondestructive technique that allows protein adsorption on polymer brushes to be investigated in an aqueous environment as external stimuli, such as temperature and pH, are varied. These changes are relevant to conditions for regulation of protein adsorption and desorption for biotechnology, biocatalysis, and bioanalytical applications.

View Article and Find Full Text PDF

Fast infrared mapping with sub-millimeter lateral resolution as well as time-resolved infrared studies of kinetic processes of functional organic thin films require a new generation of infrared ellipsometers. We present a novel laboratory-based infrared (IR) laser mapping ellipsometer, in which a laser is coupled to a variable-angle rotating analyzer ellipsometer. Compared to conventional Fourier-transform infrared (FT-IR) ellipsometers, the IR laser ellipsometer provides ten- to hundredfold shorter measurement times down to 80 ms per measured spot, as well as about tenfold increased lateral resolution of 120 μm, thus enabling mapping of small sample areas with thin-film sensitivity.

View Article and Find Full Text PDF

A coupled oscillator model is developed to explain the observation of gyrotropy in achiral metamaterials. By the action of distinct excitation modes, which only combine under oblique incidence, the measurement of circular birefringence in a split-ring resonator (SRR) array is explained. The symmetry of the SRR resembles the water molecule, and parallels between the systems are drawn.

View Article and Find Full Text PDF

Molecular self-assembly, the function of biomembranes and the performance of organic solar cells rely on nanoscale molecular interactions. Understanding and control of such materials have been impeded by difficulties in imaging their properties with the desired nanometre spatial resolution, attomolar sensitivity and intermolecular spectroscopic specificity. Here we implement vibrational scattering-scanning near-field optical microscopy with high spectral precision to investigate the structure-function relationship in nano-phase separated block copolymers.

View Article and Find Full Text PDF

In the present study we investigated the preparation of biofunctionalized surfaces using the direct electrochemical grafting of maleimidophenyl molecules with subsequent covalent immobilization of specific peptide to detect target antibody, thereby extending the application of the biosensing systems towards immunodiagnostics. Para-maleimidophenyl (p-MP) functional groups were electrochemically grafted on gold and silicon surfaces from solutions of the corresponding diazonium salt. A specially synthesized peptide modified with cysteine (Cys-peptide) was then immobilized on the p-MP grafted substrates by cross-linking between the maleimide groups and the sulfhydryl group of the cysteine residues.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: