Publications by authors named "Karsten A S Eastman"

Peptidylglycine monooxygenase is a copper-dependent enzyme that catalyzes C-alpha hydroxylation of glycine extended pro-peptides, a critical post-translational step in peptide hormone processing. The canonical mechanism posits that dioxygen binds at the mononuclear M-center to generate a Cu(II)-superoxo species capable of H atom abstraction from the peptidyl substrate, followed by long-range electron tunneling from the CuH center. Recent crystallographic and biochemical data have challenged this mechanism, suggesting instead that an "open-to-closed" transition brings the copper centers closer, allowing reactivity within a binuclear intermediate.

View Article and Find Full Text PDF

Ribosomally produced and post-translationally modified polypeptides (RiPPs) are a diverse group of natural products that are processed by a variety of enzymes to their biologically relevant forms. PapB is a member of the radical -adenosyl-l-methionine (rSAM) superfamily that introduces thioether cross-links between Cys and Asp residues in the PapA RiPP. We report that PapB has high tolerance for variations in the peptide substrate.

View Article and Find Full Text PDF

Radical S-adenosyl-L-methionine (rSAM) enzymes bind one or more Fe-S clusters and catalyze transformations that produce complex and structurally diverse natural products. One of the clusters, a 4Fe-4S cluster, binds and reductively cleaves SAM to generate the 5'-deoxyadenosyl radical, which initiates the catalytic cycle by H-atom transfer from the substrate. The role(s) of the additional auxiliary Fe-S clusters (ACs) remains largely enigmatic.

View Article and Find Full Text PDF

Radical -adenosyl-l-methionine (SAM) enzymes leverage the properties of one or more iron- and sulfide-containing metallocenters to catalyze complex and radical-mediated transformations. By far the most populous superfamily of radical SAM enzymes are those that, in addition to a 4Fe-4S cluster that binds and activates the SAM cofactor, also bind one or more additional auxiliary clusters (ACs) of largely unknown catalytic significance. In this report we examine the role of ACs in two RS enzymes, PapB and Tte1186, that catalyze formation of thioether cross-links in ribosomally synthesized and post-translationally modified peptides (RiPPs).

View Article and Find Full Text PDF

Radical -adenosyl-l-methionine (RS) enzymes operate on a variety of substrates and catalyze a wide range of complex radical-mediated transformations. Radical non-α-carbon thioether peptides (ranthipeptides) are a class of ribosomally synthesized and post-translationally modified peptides (RiPPs). The RS enzyme PapB catalyzes the formation of thioether cross-links between Cys/Asp (or Cys/Glu) residues located in six Cys-X-Asp/Glu motifs.

View Article and Find Full Text PDF