Introduction: MISTRG mice have been genetically modified to allow development of a human myeloid compartment from engrafted human CD34+ haemopoietic stem cells, making them particularly suited to study the human innate immune system . Here, we characterized the human neutrophil population in these mice to establish a model that can be used to study the biology and contribution in immune processes of these cells .
Methods And Results: We could isolate human bone marrow neutrophils from humanized MISTRG mice and confirmed that all neutrophil maturation stages from promyelocytes (CD11b-CD16-) to end-stage segmented cells (CD11b+CD16+) were present.
Tissue repair requires temporal control of progenitor cell proliferation and differentiation to replenish damaged cells. In response to acute insult, group 3 innate lymphoid cells (ILC3s) regulate intestinal stem cell maintenance and subsequent tissue repair. ILC3-derived IL-22 is important for stem cell protection, but the mechanisms of ILC3-driven tissue regeneration remain incompletely defined.
View Article and Find Full Text PDFBreach of tolerance to gluten leads to the chronic small intestinal enteropathy celiac disease. A key event in celiac disease development is gluten-dependent infiltration of activated cytotoxic intraepithelial lymphocytes (IELs), which cytolyze epithelial cells causing crypt hyperplasia and villous atrophy. The mechanisms leading to gluten-dependent small intestinal IEL infiltration and activation remain elusive.
View Article and Find Full Text PDFUnder homeostatic conditions, dendritic cells (DCs) continuously patrol the intestinal lamina propria. Upon antigen encounter, DCs initiate C-C motif chemokine receptor 7 (CCR7) expression and migrate into lymph nodes to direct T cell activation and differentiation. The mechanistic underpinnings of DC migration from the tissues to lymph nodes have been largely elucidated, contributing greatly to our understanding of DC functionality and intestinal immunity.
View Article and Find Full Text PDFCurr Opin Hematol
July 2016
Purpose Of Review: Innate lymphoid cells (ILC) have emerged as modulators of conditioning-induced tissue damage and development of graft-versus-host disease (GVHD) in the context of allogeneic hematopoietic stem cell transplantation (HSCT). This review highlights experimental and clinical evidence for a role of ILC in GVHD pathogenesis.
Recent Findings: ILC are well known for their role in epithelial homeostasis and innate immunity.
Tolerance to harmless exogenous antigens is the default immune response in the gastrointestinal tract. Although extensive studies have demonstrated the importance of the mesenteric lymph nodes (MLNs) and intestinal CD103(+) dendritic cells (DCs) in driving small intestinal tolerance to protein antigen, the structural and immunological basis of colonic tolerance remain poorly understood. We show here that the caudal and iliac lymph nodes (ILNs) are inductive sites for distal colonic immune responses and that colonic T cell-mediated tolerance induction to protein antigen is initiated in these draining lymph nodes and not in MLNs.
View Article and Find Full Text PDFPlasmacytoid dendritic cells (pDC) have been regarded as the "professional type I IFN-producing cells" of the immune system following viral recognition that relies on the expression of TLR7 and TLR9. Furthermore, pDC link the innate and adaptive immune systems via cytokine production and Ag presentation. More recently, their ability to induce tolerance and cytotoxicity has been added to their "immune skills.
View Article and Find Full Text PDFDuring microbial infections, plasmacytoid dendritic cells (pDCs) are a main source of type I interferons α/β (IFN-α/-β). Nucleic acids from microbes are sensed by Toll-like receptors 7/9 (TLR7/9), which are selectively expressed in pDCs. Activated pDCs also produce proinflammatory cytokines and upregulate costimulatory molecules.
View Article and Find Full Text PDFPlasmacytoid dendritic cells (pDCs) play a crucial role during innate immunity by secreting bulk amounts of type I interferons (IFNs) in response to Toll-like receptor (TLR)-mediated pathogen recognition. In addition, pDCs can also contribute to adaptive immunity by activation of antigen-specific T cells. Furthermore, it is well established that pDCs contribute to the pathogenesis of autoimmune diseases, including lupus.
View Article and Find Full Text PDFType 2 innate lymphoid cells (ILC2s) are part of a large family of ILCs that are important effectors in innate immunity, lymphoid organogenesis, and tissue remodeling. ILC2s mediate parasite expulsion but also contribute to airway inflammation, emphasizing the functional similarity between these cells and Th2 cells. Consistent with this, we report that the transcription factor GATA3 was highly expressed by human ILC2s.
View Article and Find Full Text PDFPlasmacytoid dendritic cells (pDCs) are key players in antiviral immunity. In addition to massive type I interferon production, activated pDCs express the apoptosis-inducing molecule TRAIL, which enables them to clear infected cells that express the TRAIL receptors TRAIL-R1 and TRAIL-R2. In this study, we examined the molecular mechanisms that govern TRAIL expression in human pDCs.
View Article and Find Full Text PDFPlasmacytoid dendritic cells (pDCs) selectively express Toll-like receptor (TLR)-7 and TLR-9, which allow them to rapidly secrete massive amounts of type I interferons after sensing nucleic acids derived from viruses or bacteria. It is not completely understood how development and function of pDCs are controlled at the transcriptional level. One of the main factors driving pDC development is the ETS factor Spi-B, but little is known about its target genes.
View Article and Find Full Text PDFHere we present the Transcription Factor Encyclopedia (TFe), a new web-based compendium of mini review articles on transcription factors (TFs) that is founded on the principles of open access and collaboration. Our consortium of over 100 researchers has collectively contributed over 130 mini review articles on pertinent human, mouse and rat TFs. Notable features of the TFe website include a high-quality PDF generator and web API for programmatic data retrieval.
View Article and Find Full Text PDFOver the last two decades, several humanized mouse models have been used to experimentally analyze the function and development of the human immune system. Recent advances have lead to the establishment of new murine-human chimeric models with improved characteristics, both in terms of human engraftment efficiency and in situ multilineage human hematopoietic development. We describe here the use of newborn BALB/c Rag2(-/-)gamma(c) (-/-) mice as recipients of human hematopoietic progenitor cells to produce "human immune system" (HIS) (BALB-Rag/gamma) mice, using human fetal liver progenitors.
View Article and Find Full Text PDFOur understanding of human lymphocyte development has increased significantly over the past 20 years. In particular, our insight into human T- and B-cell development has improved (1, 2). Nonetheless, there are many gaps in our understanding, particularly regarding the early stages of development of hematopoietic progenitor cells (HPCs) into downstream lineage-biased and lineage-restricted precursors and the molecular mechanisms underlying these activities.
View Article and Find Full Text PDF