Publications by authors named "Karpiscak M"

The Convection Dispersion Equation (CDE) was used to calculate PRD1 and Br(-) transport parameters in a subsurface flow constructed wetland. Transport parameters from Br(-) displacement were applied into the CDE to estimate a 0.96 day(-1) first order decay coefficient (k).

View Article and Find Full Text PDF

The primary objective of this study was to determine the microbial water quality of a large irrigation system and how this quality varies with respect to canal size, impact of near-by communities, and the travel distance from the source in the El Valle del Yaqui, Sonora, México. In this arid region, 220,000 hectares are irrigated with 80% of the irrigation water being supplied from an extensive irrigation system including three dams on the Yaqui River watershed. The stored water flows to the irrigated fields through two main canal systems (severing the upper and lower Yaqui Valley) and then through smaller lateral canals that deliver the water to the fields.

View Article and Find Full Text PDF

A tracer study was conducted in a 3-ha surface flow constructed wetland to analyze transport performance of PRD1, an enteric virus model. The convection-dispersion equation (CDE), including a first-order reaction model, adequately simulated transport performance of PRD1 in the wetland under an average hydraulic loading rate of 82 mm/d. Convective velocity (v) and longitudinal dispersion coefficient (D) were estimated by modeling a conservative tracer (bromide) pulse through the wetland.

View Article and Find Full Text PDF

Little information has been gathered on the effect of avian species on the microbial water quality in constructed wetlands. To address this concern, fecal pollution from nonpoint and point sources was evaluated in a constructed wetland in Tolleson, Arizona. Antibiotic resistance profiling and biochemical fingerprinting were performed on 325 Escherichia coli isolates, collected from key points in the wetlands.

View Article and Find Full Text PDF

Sedimentation is thought to be one of the mechanisms of microbial reduction from wetlands used for wastewater treatment. This study compared the occurrence and survival of enteric indicator microorganisms and pathogens in the water column and sediments of two constructed surface flow wetlands in Arizona. On a volume/wet weight basis the concentration of fecal coliforms and coliphage in the water column and sediment was similar.

View Article and Find Full Text PDF

The fate of dissolved organic matter (DOM) during subsurface wetland treatment of wastewater effluent in a hot, semi-arid environment was examined. The study objectives were to (1) discern changes in the character of dissolved organics as consequence of wetland treatment (2) establish the nature of wetland-derived organic matter, and (3) investigate the impact of wetland treatment on the formation potential of trihalomethanes (THMs). Subsurface wetland treatment produced little change in DOM polarity (hydrophobic-hydrophilic) distribution.

View Article and Find Full Text PDF

It has been demonstrated that large constructed wetlands used for domestic wastewater treatment are useful in the reduction of enteric microorganisms. This study evaluated the ability of three small-scale, on-site subsurface wetlands with different vegetation densities to remove total coliforms, fecal coliforms, coliphage, Giardia and Cryptosporidium. These wetlands were found to be equally efficient in the removal of enteric bacteria and coliphage as larger constructed wetlands.

View Article and Find Full Text PDF

Virus removal was studied in a multispecies subsurface-flow constructed wetland. Tracer studies and a virus survival test were conducted using bromide and bacteriophage PRD1 that were simultaneously added into a 6-year-old gravel-filled wetland. The estimated dimensionless variance and the observed bromide breakthrough curve suggest a plug-flow reactor with some dispersion.

View Article and Find Full Text PDF

A 5-year program of study was conducted at the Sweetwater Recharge Facilities (SRF) to assess the performance of surface spreading operations for organics attenuation during field-scale soil-aquifer treatment (SAT) of municipal wastewater. Studies were conducted utilizing both mature (approximately 10 yr old) and new infiltration basins. Removals of dissolved organic carbon (DOC) were robust, averaging >90 percent during percolation through the local 37-m vadose zone.

View Article and Find Full Text PDF

Aims: To determine the ability of duckweed ponds used to treat domestic waste-water to remove Giardia and Cryptosporidium.

Methods And Results: The influent and effluent of a pond covered with duckweed with a 6 day retention time was tested for Giardia cysts, Cryptosporidium oocysts, faecal coliforms and coliphage. Giardia cysts and Cryptosporidium oocysts were reduced by 98 and 89%, respectively, total coliforms by 61%, faecal coliforms by 62% and coliphage by 40%.

View Article and Find Full Text PDF

The Constructed Ecosystems Research Facility (CERF) was conceived in the early 1980s as a test facility to explore the potential for using plants to treat wastewater in the arid west of the USA. One of the major issues that has been identified in the use of constructed wetland technology is plant nutrient uptake and tissue storage of nutrients as well as heavy metals. Our approach to understanding plant uptake and storage has been to look at both controlled conditions in constructed systems and background concentrations in natural systems.

View Article and Find Full Text PDF

We examined the fate of organics during wetland treatment of secondary effluent and groundwater (control) flows in parallel, research-scale, subsurface-flow (SSF) wetland raceways at the Constructed Ecosystem Research Facility (CERF) located in Tucson, Arizona. The CERF facility enabled us to distinguish experimentally among effects on effluent quality due to season-dependent processes of evapotranspiration (ET) and wetlands-derived production of organics. Organics of wastewater and wetlands origin were compared in terms of their contributions to dissolved organic carbon (DOC) in wetland effluent.

View Article and Find Full Text PDF

Microbial removal by a multi-component treatment system for dairy and municipal wastewater is being studied in Arizona, USA. The system consists of paired solids separators, anaerobic lagoons, aerobic ponds and constructed wetlands cells. The organisms under study include: total coliform, fecal coliform, enterovirus, Listeria monocytogenes, Clostridium perfringens, coliphage, Giardia lamblia and Cryptosporidium parvum.

View Article and Find Full Text PDF

Wetlands containing floating, emergent and submergent aquatic plants, and other water-tolerant species have been found to economically provide a mechanism of enhancing the quality of domestic wastewater. The use of constructed wetlands for the removal of indicator bacteria (total and fecal coliforms), coliphages, protozoan parasites (Giardia and Cryptosporidium) and enteric viruses was investigated. A pilot scale constructed wetland consisting of two cells, one planted with bulrush and the other unplanted bare sand, were used to compare their efficiency in removing pathogens from raw sewage.

View Article and Find Full Text PDF
Chemical and microbial characterization of household graywater.

J Environ Sci Health A Tox Hazard Subst Environ Eng

October 2001

In arid areas, the search for efficient methods to conserve water is of paramount importance. One of the methods of water conservation available today is graywater recycling--the reuse of water from the sinks, showers, washing machine, and dishwasher in a home. The purpose of this project was to characterize the chemical and microbial quality of graywater from a single-family home with two adults.

View Article and Find Full Text PDF

Limited information is available on the ability of subsurface flow wetlands to remove enteric pathogens. Two multi-species wetlands, one receiving secondary sewage effluent and the other potable (disinfected) groundwater were studied from February 1995 to August 1996, at the Pima County Constructed Ecosystems Research Facility in Tucson, Arizona. Each wetland had a retention time of approximately 4 days.

View Article and Find Full Text PDF

Professionals in academia usually are not trained in documenting their research activities to the extent and detail mandated under Good Laboratory Practice (GLP) regulations. To assist researchers at the University of Arizona in implementing a GLP program, the university's Quality Assurance Unit (QAU) has written procedures and checklists detailing various aspects of GLPs. Since a key to the successful implementation of GLPs is comprehensive documentation in laboratory notebooks of research activities, information and guidelines are provided in a checklist format.

View Article and Find Full Text PDF