Publications by authors named "Karoly Pocsai"

The study demonstrates the astroglial and gliovascular structures of the area postrema (AP) in three planes, and compares them to our former findings on the subfornical organ (SFO) and the organon vasculosum laminae terminalis (OVLT). The results revealed long glial processes interconnecting the AP with deeper areas of brain stem. The laminin and β-dystroglycan immunolabeling altered along the vessels indicating alterations of the gliovascular relations.

View Article and Find Full Text PDF

This study demonstrates glial and gliovascular markers of organon vasculosum laminae terminalis (OVLT) in three planes. The distribution of glial markers displayed similarities to the subfornical organ. There was an inner part with vimentin- and nestin-immunopositive glia whereas GFAP and the water-channel aquaporin 4 were found at the periphery.

View Article and Find Full Text PDF

The present paper provides novel findings on the temporo-spatial correlation of perivascular laminin immunoreactivity with the early postnatal astrocyte development. The cerebrovascular laminin immunoreactivity gradually disappears during development. The fusion of the glial and vascular basal laminae during development makes the laminin epitopes inaccessible for antibody molecules (Krum et al.

View Article and Find Full Text PDF

The subfornical organ (SFO) is a circumventricular organ with a chemosensitive function, and its vessels have no blood-brain barrier. Our study investigated the glial and vascular components in the SFO to determine whether their distributions indicate subdivisions, how to characterize the vessels and how to demarcate the SFO. To this end, we investigated glial markers (GFAP, glutamine synthetase, S100) and other markers, including vimentin and nestin (immature glia), laminin (basal lamina), β-dystroglycan (glio-vascular connections), and aquaporin 4 (glial water channels).

View Article and Find Full Text PDF

Utrophin is an autosomal homologue of dystrophin. Dystrophin is a member of the dystrophin-glycoprotein complex, which is a cell surface receptor for basal lamina components. In recent opinions utrophin occurs in the cerebrovascular endothelium but not in the perivascular glia.

View Article and Find Full Text PDF

In the central nervous system the extracellular matrix has important roles, e.g. supporting the extracellular space, controlling the tissue hydration, binding soluble factors and influencing their diffusion.

View Article and Find Full Text PDF

The so-called neurointermediate lobe is composed of the intermediate and neural lobes of the pituitary. The present immunohistochemical study investigated components of the basal lamina (laminin, agrin, and perlecan), the dystrophin-dystroglycan complex (dystrophin, beta-dystroglycan, alpha1-dystrobrevin, beta-dystrobrevin, utrophin, and alpha1-syntrophin), and the aquaporins (aquaporin-4 and -9). Glia markers (GFAP, S100, and glutamine synthetase) and components of connective tissue (collagen type I and fibronectin) were also labeled.

View Article and Find Full Text PDF

The pineal gland is an evagination of the brain tissue, a circumventricular neuroendocrine organ. Our immunohistochemical study investigates basal lamina components (laminin, agrin, perlecan, fibronectin), their receptor, the dystrophin-dystroglycan complex (beta-dystroglycan, dystrophin utrophin), aquaporins (-4,-9) and cellular markers (S100, neurofilament, GFAP, glutamine synthetase) in the adult rat corpus pineale. The aim was to compare the immunohistochemical features of the cerebral and pineal vessels and their environment, and to compare their features in the distal and proximal subdivisions of the so-called 'superficial pineal gland'.

View Article and Find Full Text PDF