Publications by authors named "Karoly Micskei"

Absolute asymmetric synthesis (AAS) is the preparation of pure (or excess of one) enantiomer of a chiral compound from achiral precursor(s) by a chemical reaction, without enantiopure chiral additive and/or without applied asymmetric physical field. Only one well-characterized example of AAS is known today: the Soai-autocatalysis. In an attempt at clarification of the mechanism of this particular reaction we have undertaken empirical and stochastic analysis of several parallel AAS experiments.

View Article and Find Full Text PDF

Origin(s) of biological chirality appear(s) to be intimately connected to origin(s) of life. Prebiotic evolution toward these important turning points can be traced back to single chiral molecules. These can be small (monomeric) units as amino acids or monosaccharides or oligomers as oligo-RNA type molecules.

View Article and Find Full Text PDF

Amino acids are attractive sources of chirality in stoichiometric or catalytic transition metal/organic chemistry. In spite of easy availability and other advantages, the application of these ligands is hindered by several problems. Now, at the dawn of emerging D-amino acid biochemistry, efforts in this direction are becoming increasingly important.

View Article and Find Full Text PDF

A kinetic model of spontaneous amplification of enantiomeric excess in the autocatalytic addition of diisopropylzinc to prochiral pyrimidine carbaldehydes is extended by a negative feedback process. Simulations based on the extended model result in large-amplitude oscillations both in a continuous-flow stirred tank reactor (CSTR) and in a semibatch configuration under optimized initial conditions. When sustained oscillations are maintained in a CSTR, no enantiomeric product distribution could be observed in the calculated series; the system keeps its initial enantiomeric ratio endlessly.

View Article and Find Full Text PDF

Natural-abundance isotopic substitution in isotopically prochiral groups of otherwise achiral molecules can provide stochastically formed enantiomeric excesses which exceed the sensitivity threshold of sensitive asymmetric autocatalytic (Soai-type) reactions. This kind of induction of chirality should be taken into consideration in in vitro model experiments and offer a new kind of entry into primary prebiotic or early biotic enantioselection in the earliest stages of molecular evolution.

View Article and Find Full Text PDF

Enantiomeric excesses obtained in absolute enantioselective synthesis by chiral autocatalysis (Soai-reaction) were statistically analyzed. Two sets of parallel experiments, which were performed under chemically different conditions, are available. One group contains 37, while the other contains 84 preparative results.

View Article and Find Full Text PDF

The only known example of chiral autocatalysis is the alkylation of N-heterocyclic aldehydes with iPr(2)Zn (Soai reaction). The mechanism and some details of this reaction are not yet clear. An empirical formula is proposed here for the description of this chiral autocatalytic reaction.

View Article and Find Full Text PDF

Asymmetric reduction of oximes was performed by chromium(II) complexes of natural amino acids in aqueous phase or in H(2)O/DMF (1:1) solvent. Medium-to-quantitative chemoselectivity (54% to >95%) and low-to-medium enantioselectivity (5-50% ee) were found.

View Article and Find Full Text PDF