The global rise of antibiotic resistance calls for new drugs against bacterial pathogens. A common approach is to search for natural compounds deployed by microbes to inhibit competitors. Here, we show that the iron-chelating pyoverdines, siderophores produced by environmental spp.
View Article and Find Full Text PDFMicrobial secondary metabolites are a rich source for pharmaceutical discoveries and play crucial ecological functions. While tools exist to identify secondary metabolite clusters in genomes, precise sequence-to-function mapping remains challenging because neither function nor substrate specificity of biosynthesis enzymes can accurately be predicted. Here, we developed a knowledge-guided bioinformatic pipeline to solve these issues.
View Article and Find Full Text PDFSteroid metabolites are increasingly in focus when searching for novel biomarkers in physiological mechanisms and their disorders. While major steroids such as progesterone and cortisol are well-researched and routinely determined to assess the health, particularly the reproductive status of mammals, the function of potentially biologically active progestogen and glucocorticoid metabolites is widely unexplored. One of the main reasons for this is the lack of comprehensive, sensitive, and specific analytical methods.
View Article and Find Full Text PDFMicroorganisms produce iron chelators called siderophores that are a rich source for drug discovery or plant protective agents. Pyoverdines are a class of siderophores from fluorescent Pseudomonas members and consist of different peptide chains specific to each bacterial species. The structural elucidation and characterization of pyoverdines require comprehensive analytical methods as bacterial extracts are complex mixtures.
View Article and Find Full Text PDFBacteria secrete siderophores whose function is to acquire iron. In recent years, the siderophores of several Chryseobacterium species were shown to promote the health and growth of various plants such as tomato or rice. However, the chemical nature of Chryseobacterium siderophores remained unexplored despite great interest.
View Article and Find Full Text PDFSiderophores are iron-chelating molecules produced by bacteria and other microbes. They are involved with virulence in infections and play key roles in bacterial community assembly and as plant protectants due to their pathogen control properties. Although assays exist to screen whether newly isolated bacteria can produce siderophores, the chemical structures of many of these bio-active molecules remain unidentified due to the lack of rapid analytical procedures.
View Article and Find Full Text PDFMicrobial secondary metabolites represent a rich source for drug discovery, plant protective agents, and biotechnologically relevant compounds. Among them are siderophores, iron-chelating molecules, that show a great influence on bacterial community assembly and the potential to control pathogen invasions. One of such a siderophore is pyoverdine that is produced by fluorescent Pseudomonas members and consists of different peptide chains specific to each bacterial species.
View Article and Find Full Text PDF