Publications by authors named "Karoline E Duarte"

The high rate of productivity observed in panicoid crops is in part due to their extensive root system. Recently, green foxtail (Setaria viridis) has emerged as a genetic model system for panicoid grasses. Natural accessions of S.

View Article and Find Full Text PDF

Unlabelled: Water deficit is a major constraint for crops of economic importance in almost all agricultural regions. However, plants have an active defense system to adapt to these adverse conditions, acting in the reprogramming of gene expression responsible for encoding microRNAs (miRNAs). These miRNAs promote the regulation to the target gene expression by the post-transcriptional (PTGS) and transcriptional gene silencing (TGS), modulating several pathways including defense response to water deficit.

View Article and Find Full Text PDF

The CRISPR/Cas9 system has been used for genome editing in several organisms, including higher plants. This system induces site-specific mutations in the genome based on the nucleotide sequence of engineered guide RNAs. The complex genomes of C4 grasses makes genome editing a challenge in key grass crops like maize (), sorghum (), spp.

View Article and Find Full Text PDF

Background: A major limiting factor for plant growth is the aluminum (Al) toxicity in acidic soils, especially in tropical regions. The exclusion of Al from the root apex through root exudation of organic acids such as malate and citrate is one of the most ubiquitous tolerance mechanisms in the plant kingdom. Two families of anion channels that confer Al tolerance are well described in the literature, ALMT and MATE family.

View Article and Find Full Text PDF

Grass cell walls have hydroxycinnamic acids attached to arabinosyl residues of arabinoxylan (AX), and certain BAHD acyltransferases are involved in their addition. In this study, we characterized one of these BAHD genes in the cell wall of the model grass Setaria viridis. RNAi silenced lines of S.

View Article and Find Full Text PDF

Background: Sugarcane ( spp.) covers vast areas of land (around 25 million ha worldwide), and its processing is already linked into infrastructure for producing bioethanol in many countries. This makes it an ideal candidate for improving composition of its residues (mostly cell walls), making them more suitable for cellulosic ethanol production.

View Article and Find Full Text PDF

Abscisic acid (ABA) is an essential phytohormone that regulates growth, development and adaptation of plants to environmental stresses. In Arabidopsis and other higher plants, ABA signal transduction involves three core components namely PYR/PYL/RCAR ABA receptors (PYLs), type 2C protein phosphatases (PP2Cs) and class III SNF-1-related protein kinase 2 (SnRK2s). In the present study, we reported the identification and characterization of the core ABA signaling components in Setaria viridis, an emerging model plant for cereals and feedstock crops presenting C4 metabolism, leading to the identification of eight PYL (SvPYL1 to 8), twelve PP2C (SvPP2C1 to 12) and eleven SnRK2 (SvSnRK2.

View Article and Find Full Text PDF
Article Synopsis
  • Acidic soils, mainly found in tropical and subtropical regions, make up about 50% of arable land and significantly hinder crop production due to increased aluminum solubility at low pH levels.
  • A physiological response in plants involves activating membrane transporters to secrete organic acid anions that chelate aluminum, preventing root absorption.
  • Research on sorghum revealed a specific MATE gene that, when overexpressed in transgenic plants, improved aluminum tolerance through enhanced root growth and increased citrate exudation, indicating its potential for transforming other important C4 crops for better aluminum resistance.
View Article and Find Full Text PDF

Background: Drought is a widespread limiting factor in coffee plants. It affects plant development, fruit production, bean development and consequently beverage quality. Genetic diversity for drought tolerance exists within the coffee genus.

View Article and Find Full Text PDF