Introduction: The nonsteroidal mineralocorticoid receptor (MR) antagonist finerenone and sodium-glucose cotransporter-2 (SGLT2) inhibitors have demonstrated clinical benefits in chronic kidney disease patients with type 2 diabetes. Precise molecular mechanisms responsible for these benefits are incompletely understood. Here, we investigated potential direct anti-fibrotic effects and mechanisms of nonsteroidal MR antagonism by finerenone or SGLT2 inhibition by empagliflozin in 2 relevant mouse kidney fibrosis models: unilateral ureter obstruction and sub-chronic ischemia reperfusion injury.
View Article and Find Full Text PDFBackground: Riociguat is a first-in-class soluble guanylate cyclase stimulator for which preclinical data suggested improvements in cystic fibrosis transmembrane conductance regulator (CFTR) function.
Methods: This international, multicenter, two-part, Phase II study of riociguat enrolled adults with cystic fibrosis (CF) homozygous for Phe508del CFTR. Part 1 was a 28-day, randomized, double-blind, placebo-controlled study in participants not receiving CFTR modulator therapy.
Introduction: The nonsteroidal mineralocorticoid receptor (MR) antagonist finerenone and sodium-glucose cotransporter-2 (SGLT2) inhibitors have demonstrated clinical benefits in CKD patients with type 2 diabetes. Clinical data analyzing the potential value of a combination therapy are currently limited. We therefore investigated cardiorenal protection of respective mono- and combination therapy in a preclinical model of hypertension-induced end-organ damage.
View Article and Find Full Text PDFInfluenza is a respiratory disease that causes annual epidemics. Antiviral treatment options targeting the virus exist, but their efficiency is limited and influenza virus strains easily develop resistance. Thus, new treatment strategies are urgently needed.
View Article and Find Full Text PDFThe appearance of pandemic H1N1 and highly pathogenic avian H5N1 viruses in humans as well as the emergence of seasonal H1N1 variants resistant against neuraminidase inhibitors highlight the urgent need for new and amply available antiviral drugs. We and others have demonstrated that influenza virus misuses the cellular IKK/NF-kappaB signaling pathway for efficient replication suggesting that this module may be a suitable target for antiviral intervention. Here, we show that the novel NF-kappaB inhibitor SC75741 significantly protects mice against infection with highly pathogenic avian influenza A viruses of the H5N1 and H7N7 subtypes.
View Article and Find Full Text PDFBackground: In 2005 Best and Quinton established the salivary secretion assay in mice for the in vivo characterization of new drugs against cystic fibrosis (CF). However, limited data are available and the predictive value of this in vivo assay for treatment effects in CF patients is not fully understood.
Methods: Therefore, we revisited the salivary secretion assay and systematically investigated the salivary secretion rates in different murine backgrounds and sexes, as well as in different CF mouse models.
The emergence of the 2009 H1N1 pandemic swine influenza A virus is a good example of how this viral infection can impact health systems around the world in a very short time. The continuous zoonotic circulation and reassortment potential of influenza A viruses (IAV) in nature represents an enormous public health threat to humans. Beside vaccination antivirals are needed to efficiently control spreading of the disease.
View Article and Find Full Text PDFThe recent emergence of pandemic swine-origin influenza virus (H1N1) and the severe outbreaks of highly pathogenic avian influenza virus of the H5N1 subtype leading to death in humans is a reminder that influenza remains a frightening foe throughout the world. Besides vaccination, there is an urgent need for new antiviral strategies to protect against influenza. The innate immune response to influenza viruses involves production of interferon alpha and beta (IFN-α/β), which plays a crucial role in virus clearance during the initial stage of infection.
View Article and Find Full Text PDFThe influenza virus, major surface glycoprotein hemagglutinin (HA) is one of the principal targets for the development of protective immunity. Aiming at contributing to the development of a vaccine that remains the first choice for prophylactic intervention, a reconstituted model of HA, mimicking its antigenic properties was designed, synthesized and tested in mice for the induction of protective immunity. Four helper T lymphocyte [HTL (T(1) , T(3) , T(7) and T(8) )] and four cytotoxic lymphocyte [CTL (T(2) , T(4) , T(5) and T(6) )] epitopes were coupled in two copies each to an artificial carrier, SOC(4) , which was formed by the repeating tripeptide Lys-Aib-Gly.
View Article and Find Full Text PDFHighly pathogenic avian influenza viruses (HPAIVs) cause severe disease in humans. Still, the basis for their increased pathogenesis remains unclear. Additionally, the high morbidity in the younger population stays inexplicable, and the recent pandemic H1N1v outbreak in 2009 demonstrated the urgent need for a better understanding about influenza virus infection.
View Article and Find Full Text PDFTwo major nuclear factor-kappaB (NF-kappaB) signalling pathways are involved in the regulation of the immune response. While the classical NF-kappaB pathway is responsible for regulation of genes encoding components of the innate immune response, the alternative NF-kappaB signalling pathway mediates processes of the adaptive immune system. To evaluate the role of the NF-kappaB signalling pathways in the control of viral infection, we have used lymphocytic choriomeningitis virus (LCMV) infection of mice, which is known to be an excellent model for studying antiviral immune responses.
View Article and Find Full Text PDFA H5N2 low pathogenic avian influenza virus (LPAIV) was isolated from a natural reservoir in Bavaria during a routine screen and was used as a vaccine strain to scrutinize the immune response involved in cross-protection after challenge infection with a H5N1 highly pathogenic avian influenza virus (HPAIV). The challenge virus was also isolated from a natural reservoir in Bavaria. Wild type, antibody deficient (muMT), CD4(-/-) and CD8(-/-) mice were infected with the apathogenic H5N2 vaccine strain and challenge infection with a 100-fold MLD(50) of the H5N1 strain was performed 80 days later.
View Article and Find Full Text PDFDuring H5N1 influenza virus infection, proinflammatory cytokines are markedly elevated in the lungs of infected hosts. The significance of this dysregulated cytokine response in H5N1-mediated pathogenesis remains to be determined. To investigate the influence of hypercytokinemia, or "cytokine storm," a transgenic mouse technology was used.
View Article and Find Full Text PDFInfluenza, a respiratory disease caused by influenza viruses, is still a worldwide threat with a high potential to cause a pandemic. Beside vaccination, only two classes of drugs are available for antiviral treatment against the pathogen. Here we show that CYSTUS052, a plant extract from a special variety of Cistus incanus that is rich in polymeric polyphenols, exhibits antiviral activity against a highly pathogenic avian influenza A virus (H7N7) in cell culture and in a mouse infection model.
View Article and Find Full Text PDFInfections with influenza A viruses still pose a major threat to humans and several animal species. The occurrence of highly pathogenic avian influenza viruses of the H5N1 subtype capable to infect and kill humans highlights the urgent need for new and efficient countermeasures against this viral disease. Here we demonstrate that a polyphenol rich extract (CYSTUS052) from the Mediterranean plant Cistus incanus exerts a potent anti-influenza virus activity in A549 or MDCK cell cultures infected with prototype avian and human influenza strains of different subtypes.
View Article and Find Full Text PDF