Publications by authors named "Karoline C Scholzen"

We report piperazine-fused six-membered-cyclic disulfides as redox substrates that unlock best-in-class bioreduction probes for live cell biology, since their self-immolation after reduction is unprecedentedly rapid. We develop scalable, diastereomerically pure, six-step syntheses that access four key - and -piperazine-fused cyclic dichalcogenides without chromatography. Fluorogenic redox probes using the disulfide piperazines are activated >100-fold faster than the prior art monoamines, allowing us to deconvolute reduction and cyclization rates during activation.

View Article and Find Full Text PDF

In plant cell walls, covalent bonds between polysaccharides and lignin increase recalcitrance to degradation. Ester bonds are known to exist between glucuronic acid moieties on glucuronoxylan and lignin, and these can be cleaved by glucuronoyl esterases (GEs) from carbohydrate esterase family 15 (CE15). GEs are found in both bacteria and fungi, and some microorganisms also encode multiple GEs, although the reason for this is still not fully clear.

View Article and Find Full Text PDF

Ferroptosis is defined as cell death triggered by iron-dependent lipid peroxidation that is preventable by antioxidant compounds such as ferrostatin-1. Endogenous suppressors of ferroptosis include FSP-1 and the selenoprotein GPX4, the latter of which directly enzymatically reduces lipid hydroperoxides. Small molecules that trigger ferroptosis include RSL3, ML162, and ML210; these compounds are often used in studies of ferroptosis and are generally considered as GPX4 inhibitors.

View Article and Find Full Text PDF

Quantifying the activity of key cellular redox players is crucial for understanding physiological homeostasis, and for targeting their perturbed states in pathologies including cancer and inflammatory diseases. However, cellularly-selective probes for oxidoreductase turnover are sorely lacking. We rationally developed the first probes that selectively target the mammalian selenoprotein thioredoxin reductase (TrxR), using a cyclic selenenylsulfide oriented to harness TrxR's unique selenolthiol chemistry while resisting the cellular monothiol background.

View Article and Find Full Text PDF

The cyclic five-membered disulfide 1,2-dithiolane has been widely used in chemical biology and in redox probes. Contradictory reports have described it either as nonspecifically reduced in cells, or else as a highly specific substrate for thioredoxin reductase (TrxR). Here we show that 1,2-dithiolane probes, such as "TRFS" probes, are nonspecifically reduced by thiol reductants and redox-active proteins, and their cellular performance is barely affected by TrxR inhibition or knockout.

View Article and Find Full Text PDF