Publications by authors named "Karolina Swiatek-Machado"

STAT (signal transducers and activators of transcription) are latent cytoplasmic transcription factors that function as downstream effectors of cytokine and growth factor receptor signaling. The canonical JAK/STAT signaling pathway involves the activation of Janus kinases (JAK) or growth factors receptor kinases, phosphorylation of STAT proteins, their dimerization and translocation into the nucleus where STATs act as transcription factors with pleiotropic downstream effects. STAT signaling is tightly controlled with restricted kinetics due to action of its negative regulators.

View Article and Find Full Text PDF

Background: Signal transducer and activator of transcription 3 (STAT3) is constitutively activated in many human tumors, including gliomas, and regulates the expression of genes implicated in proliferation, survival, apoptosis, angiogenesis and immune regulation. Only a small fraction of those genes has been proven to be direct STAT3 targets. In gliomas, STAT3 can play tumor suppressive or oncogenic roles depending on the tumor genetic background with target genes being largely unknown.

View Article and Find Full Text PDF

STAT (signal transducers and activators of transcription) are latent cytoplasmic transcription factors that function as downstream effectors of cytokine and growth factor receptor signaling. The canonical JAK/STAT signaling pathway involves the activation of Janus kinases (JAK) or growth factors receptor kinases, phosphorylation of STAT proteins, their dimerization and translocation into the nucleus where STATs act as transcription factors with pleiotropic downstream effects. STAT signaling is tightly controlled with restricted kinetics due to action of its negative regulators.

View Article and Find Full Text PDF

Signaling pathways belong to a complex system of communication that governs cellular processes. They represent signal transduction from an extracellular stimulus via a receptor to intracellular mediators, as well as intracellular interactions. Perturbations in signaling cascade often lead to detrimental changes in cell function and cause many diseases, including cancer.

View Article and Find Full Text PDF

JAK (Janus kinase)/STAT (signal transducers and activators of transcription) signaling is involved in the regulation of cell growth, differentiation and apoptosis. Constitutive activation of STATs, in particular STAT3, is observed in a large number of human tumors, including gliomas and may contribute to oncogenesis by stimulating cell proliferation and preventing apoptosis, thus it emerges as a promising target for anti-cancer therapy. To investigate the therapeutic potential of blocking STAT3 in glioma cells a set of small synthetic molecules - caffeic acid derivatives, structurally related to AG490 was screened for its ability to inhibit STAT3.

View Article and Find Full Text PDF

The STAT proteins (signal transducers and activators of transcription) are transcription factors mediating cytokine/growth factor signaling, which play important role in controlling cell cycle progression and apoptosis. In many cancer cell lines and tumors (including gliomas) the STAT proteins (in particular Stats 1, 3, and 5) are persistently activated. In this study, we employed DNA decoys, siRNAs, and protein overexpression, to elucidate the role of Stat1 and Stat3 in regulation of expression of endogenous Stat3-target genes (Bcl2l1, Myc, Ccnd1) and a Stat-driven reporter plasmid, in rat C6 glioma cells.

View Article and Find Full Text PDF

Chronic activation of immune responses, mediated by inflammatory mediators and involving different effector cells of the innate and acquired immune system characterizes autoimmune disorders, such as rheumatoid arthritis, inflammatory bowel disease, psoriasis and septic shock syndrome. MAPKs are crucial intracellular mediators of inflammation. MAPK inhibitors are attractive anti-inflammatory drugs, because they are capable of reducing the synthesis of inflammation mediators at multiple levels and are effective in blocking proinflammatory cytokine signaling.

View Article and Find Full Text PDF