The discrepancies between the findings in preclinical studies, and in vivo testing and clinical trials have resulted in the gradual decline in drug approval rates over the past decades. Conventional in vitro drug screening platforms employ two-dimensional (2D) cell culture models, which demonstrate inaccurate drug responses by failing to capture the three-dimensional (3D) tissue microenvironment in vivo. Recent advancements in the field of tissue engineering have made possible the creation of 3D cell culture systems that can accurately recapitulate the cell-cell and cell-extracellular matrix interactions, as well as replicate the intricate microarchitectures observed in native tissues.
View Article and Find Full Text PDFComposites are composed of two or more materials, displaying enhanced performance and superior mechanical properties when compared to their individual components. The use of biocompatible materials has created a new category of biocomposites. Biocomposites can be applied to living tissues due to low toxicity, biodegradability and high biocompatibility.
View Article and Find Full Text PDFWe have designed and validated a set of robust and non-toxic protocols for directly evaluating the properties of engineered neural tissue. These protocols characterize the mechanical properties of engineered neural tissues and measure their electrophysical activity. The protocols obtain elastic moduli of very soft fibrin hydrogel scaffolds and voltage readings from motor neuron cultures.
View Article and Find Full Text PDFEmerging evidence shows that endothelial cells are not only the building blocks of vascular networks that enable oxygen and nutrient delivery throughout a tissue but also serve as a rich resource of angiocrine factors. Endothelial cells play key roles in determining cancer progression and response to anti-cancer drugs. Furthermore, the endothelium-specific deposition of extracellular matrix is a key modulator of the availability of angiocrine factors to both stromal and cancer cells.
View Article and Find Full Text PDFIt is shown by photometric and fluorimetric analysis, along with supporting theoretical calculations, that hydroxy-substituted benzo[b]quinolizinium derivatives display the characteristic features of organic photoacids. Specifically, the experimental and theoretical results confirm the strong acidity of these compounds in the excited state (pK* < 0). The combination of the prototropic properties of 8- and 9-hydroxybenzo[b]quinolizinium with the particular solvent-solute interactions of the excited acid and its conjugate base leads to a pronounced fluorosolvatochromism, hence the emission maxima shift from 468 nm (8-hydroxybenzo[b]quinolizinium) or 460 nm (9-hydroxybenzo[b]quinolizinium) in CHCN to 507 and 553 nm in DMF, respectively.
View Article and Find Full Text PDFIn recent years, both tissue engineering and microfluidics have significantly contributed in engineering of in vitro skin substitutes to test the penetration of chemicals or to replace damaged skins. Organ-on-chip platforms have been recently inspired by the integration of microfluidics and biomaterials in order to develop physiologically relevant disease models. However, the application of organ-on-chip on the development of skin disease models is still limited and needs to be further developed.
View Article and Find Full Text PDF