Publications by authors named "Karolina Labedzka-Dmoch"

Pentatricopeptide repeat (PPR) proteins bind RNA and are present in mitochondria and chloroplasts of Eukaryota. In fungi, they are responsible for controlling mitochondrial genome expression, mainly on the posttranscriptional level. Candida albicans is a human opportunistic pathogen with a facultative anaerobic metabolism which, unlike the model yeast Saccharomyces cerevisiae, possesses mitochondrially encoded respiratory Complex I (CI) subunits and does not tolerate loss of mtDNA.

View Article and Find Full Text PDF

The mitochondrial retrograde signaling (RTG) pathway of communication from mitochondria to the nucleus was first studied in yeast Saccharomyces cerevisiae. It rewires cellular metabolism according to the mitochondrial state by reprogramming nuclear gene expression in response to mitochondrial triggers. The main players involved in retrograde signaling are the Rtg1 and Rtg3 transcription factors, and a set of positive and negative regulators, including the Rtg2, Mks1, Lst8, and Bmh1/2 proteins.

View Article and Find Full Text PDF

Pet127 is a mitochondrial protein found in multiple eukaryotic lineages, but absent from several taxa, including plants and animals. Distant homology suggests that it belongs to the divergent PD-(D/E)XK superfamily which includes various nucleases and related proteins. Earlier yeast genetics experiments suggest that it plays a nonessential role in RNA degradation and 5' end processing.

View Article and Find Full Text PDF

The mitochondrial genome of the pathogenic yeast displays a typical organization of several (eight) primary transcription units separated by noncoding regions. Presence of genes encoding Complex I subunits and the stability of its mtDNA sequence make it an attractive model to study organellar genome expression using transcriptomic approaches. The main activity responsible for RNA degradation in mitochondria is a two-component complex (mtEXO) consisting of a 3'-5' exoribonuclease, in yeasts encoded by the gene, and a conserved Suv3p helicase.

View Article and Find Full Text PDF

Nuclease and helicase activities play pivotal roles in various aspects of RNA processing and degradation. These two activities are often present in multi-subunit complexes from nucleic acid metabolism. In the mitochondrial exoribonuclease complex (mtEXO) both enzymatic activities are tightly coupled making it an excellent minimal system to study helicase-exoribonuclease coordination.

View Article and Find Full Text PDF

Background: Yeasts show remarkable variation in the organization of their mitochondrial genomes, yet there is little experimental data on organellar gene expression outside few model species. Candida albicans is interesting as a human pathogen, and as a representative of a clade that is distant from the model yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe. Unlike them, it encodes seven Complex I subunits in its mtDNA.

View Article and Find Full Text PDF